Locally Repairable Codes with Locality 1 and Availability

Mi-Young Nam, Jung-Hyun Kim, and Hong-Yeop Song Yonsei University

ICTC 2016, October 19-21

Data Storage

• Store a file **DATA** in a storage device

Data Storage

- Encode the file **DATA**
 - Add redundancy

Data Distribution

• Distribute the encoded file to *n* storage nodes

Data Distribution

• Distribute the encoded file to *n* storage nodes

Data Collector

 Data Collector can retrieve the original file DATA by downloading from any K storage nodes

MDS Code

- Reed-Solomon (RS) Codes
 - Facebook introduced a (14, 10) RS code
 - This tolerate up to 4 missing blocks

The whole file can be reconstructed from any 10 coded blocks

The Repair Problem

- Traditional erasure-correcting codes are optimized for recreation of the original message
 - But not for regeneration of individual lost encoded parts
 - Example: (14, 10) RS code

A Trace of Node Failures

The number of failed nodes over a single month in a 3000 node production cluster of Facebook

- More than 20 nodes fail daily on average
- Each node stores 15TB

Repair Metrics of Interest

- Repair bandwidth
 - The number of bits communicated in the network during a single failed node repair
- Locality
 - The number of nodes accessed to repair a single node failure

Locally Repairable Codes

- ✓ Let C be an $(n,k)_q$ code of length n, dimension k over a finite field \mathbb{F}_q
- ✓ The locality of the *i*-th coordinate of C is r if the value of the *i*-th symbol of a codeword of C is a function of r other coordinates and no such a set of coordinates of cardinality less than r exists
 - The set of such r coordinates that can repair the *i*-th symbol is called a <u>repair set</u>
- ✓ The locality of the code C is r if the symbol locality of every symbol in a codeword of C is at most r
- ✓ An (n, k) code C with locality $r \ll k$ is defined as a **locally repairable code**

Minimum Distance

- ✓ The minimum distance d of a code C is the minimum number of difference between every pair of two codewords in C
- ✓ Erasure-correcting code with minimum distance d can tolerate up to d 1 erasures
- ✓ Singleton showed a bound on the best possible minimum distance of an (n, k) code:

$$d \le n - k + 1$$

- ✓ (n, k) codes that achieve the Singleton-bound are Maximum Distance Separable (MDS) codes
- ✓ There exists a locality-distance tradeoff
 - Any (*n*, *k*) code with locality *r* can have distance at most

$$d \le n - k - \left[\frac{k}{r}\right] + 2 \qquad \dots (1)$$

• Any MDS code must have trivial locality r = k

Availability

- ✓ If every symbol has t disjoint repair sets of size at most r, then such an LRC is said to have locality r and availability t
- ✓ The upper bound of the minimum distance of an LRC with locality r and availability t is

$$d \le n - \sum_{i=0}^{t} \left\lfloor \frac{k-1}{r^i} \right\rfloor \qquad \dots (2)$$

✓ LRCs which has the minimum distance that achieves the upper bound with equality is said to be **optimal**

Construction for LRCs

- \checkmark A unique solution for the locality 1 is the repetition code
 - ✓ A (ρ , 1) repetition code replicates the symbol by ρ − 1 times
 - $\checkmark~$ A ($\rho,1)$ repetition code has minimum distance ρ and availability $\rho-1$
 - ✓ Code rate of a (ρ , 1) repetition code is $\frac{1}{\rho}$
- ✓ Concatenating with a code having large minimum distance makes the concatenated code to have larger minimum distance
- ✓ LRCs from serial concatenation
 - $\checkmark\,$ The inner code determines the locality
 - ✓ The minimum distance *d* of the serially concatenated code is d ≥ d'D, where *d'* and *D* is the minimum distance of an inner code and an outer code, respectively

Construction for LRCs

- ✓ Serial Concatenation
 - (θ, M) MDS code + $(\rho, 1)$ repetition code

Optimality

- ✓ The concatenation results in a ($\rho\theta$, M) LRC C with locality 1 and availability ρ − 1
- ✓ The minimum distance *d* of *C* is $d = \rho(\theta M + 1)$
- ✓ When $\rho = 2$,

✓ The code C achieves the Singleton-like bound, $d \le n - k - \left[\frac{k}{r}\right] + 2$

Since
$$d = 2(\theta - M + 1) = 2\theta - M - \left[\frac{M}{1}\right] + 2$$

✓ When $\rho \ge 3$,

✓ The code *C* achieves the bound (2), $d \le n - \sum_{i=0}^{t} \left\lfloor \frac{k-1}{r^i} \right\rfloor$

since
$$d = \rho(\theta - M + 1) = \rho\theta - \sum_{i=0}^{\rho-1} \left[\frac{M-1}{1}\right] = \rho\theta - \rho(M-1)$$

Comparisons

		Repetition code	Proposed (Concatenation)		RS code
d = 4	r	1	1		М
	t	3	2		0
	R	М	M		М
		$\overline{4M}$	2(M+1)		$\overline{M+3}$
<i>d</i> = 6	r	1	1	1	М
	t	5	2	1	0
	R	М	М	М	М
		<u>6M</u>	3(M + 1)	2(M + 2)	$\overline{M+5}$

- ✓ A vector code is a code over a vector symbol alphabet \mathbb{F}_q^{α}
- ✓ Let C be an $(n, M, \alpha, r)_q$ vector LRC
 - That takes a file of size M symbols in \mathbb{F}_q encodes it to n blocks which contains α symbols of \mathbb{F}_q , and any erased block can be repaired by accessing at most r other blocks
- ✓ Simply stacking α scalar $(n, k, r)_q$ LRCs results in a vector $(n, M, \alpha, r)_q$ LRC

A Vector LRC from scalar LRCs

✓ An $(n, M, \alpha, 1)_q$ vector LRC C from α (n, M, 1) scalar LRCs

- ✓ has availability $t = \rho 1$
- ✓ the minimum distance *d* of *C* is $d = n \left[\frac{M}{\alpha}\right] \left[\frac{tM}{r\alpha}\right] + t + 1$
- ✓ The upper bound of the vector LRC is known only for t = 1
 - \checkmark The bound is the same as the minimum distance of the proposed code
 - ✓ Therefore, the proposed vector LRC is optimal when t = 1

Conclusion

- We proposed an explicit construction for optimal LRCs
 - With locality 1 and arbitrary availability
 - Based on serial concatenation
- The study of constructions for LRCs with locality larger than 1 based on a concatenation will be an interesting future work
- Also, the construction of vector LRCs by stacking scalar LRCs in different ways will be a meaningful research topic