Alphabet-Dependent Upper Bounds for Locally Repairable Codes with Joint Locality

Jung-Hyun Kim, Mi-Young Nam, and Hong-Yeop Song Yonsei University, Korea

(jh.kim06, my.nam, hysong@yonsei.ac.kr)

2016 / 10 / 31 ISITA 2016

- Motivation (joint locality)
- Alphabet-dependent bounds
- Singleton-like bounds
- Graph-based BLRCs
- Conclusions

- Motivation (joint locality)
- Alphabet-dependent bounds
- Singleton-like bounds
- Graph-based BLRCs
- Conclusions

Motivation

Locality in distributed storage systems

node failure

Generalized Definition of locality

Generalized Definition of locality

Joint locality $(r_1, r_2, ...)$ [Kim et al. 15] a set of localities for ℓ symbols repair (<u>multiple</u> values of ℓ)

Generalized Definition of locality

Joint locality $(r_1, r_2, ...)$ [Kim et al. 15] a set of localities for ℓ symbols repair (<u>multiple</u> values of ℓ)

$$\begin{array}{c} \textcircled{ \circ } \\ \textcircled{ \circ } \\ \textcircled{ \circ } \\ r_2 = 5 \end{array} \qquad \begin{array}{c} < & r_1 = 3 \\ \hline \\ r_2 = 4 \end{array} \begin{array}{c} \textcircled{ \circ } \\ \swarrow \end{array}$$

7

Motivation

Construction of BLRCs with good joint locality
 Graph-based construction [Kim et al. 15]

- Motivation (joint locality)
- Alphabet-dependent bounds
- Singleton-like bounds
- Graph-based BLRCs
- Conclusions

Theorem 1 [Proposed]

Let C be an $(n, k, d)_q$ code with joint locality $\{r_l | 1 \le l \le d - 1\}$. Then C satisfies

$$k \leq \min_{\boldsymbol{l}_{[z]}} \left[J_z + k_{opt}^{(q)}(n - I_z, d) \right],$$

where

- z is a positive integer such that $\sum_{i=1}^{z} r_{l_i} < k$,
- $l_{[z]} = \{l_i | 1 \le l_i \le d 1, 1 \le i \le z\},$
- $J_z = \sum_{i=1}^z r_{l_i}$
- $I_z = \sum_{i=1}^{z} (r_{l_i} + l_i).$

Theorem 1 [Proposed]

 \neq Cadambe et. al.'s bound

Let C be an $(n, k, d)_q$ code with joint locality $\{r_l | 1 \le l \le d - 1\}$. Then C satisfies

$$k \leq \min_{\boldsymbol{l}_{[z]}} \left[J_z + k_{opt}^{(q)}(n - I_z, d) \right],$$

where

• z is a positive integer such that $\sum_{i=1}^{z} r_{l_i} < k$,

•
$$\boldsymbol{l}_{[z]} = \{l_i | 1 \le l_i \le d - 1, 1 \le i \le z\},$$

- $J_z = \sum_{i=1}^z r_{l_i}$
- $I_z = \sum_{i=1}^{z} (r_{l_i} + l_i).$

Theorem 1 [Proposed]

Let C be an $(n, k, d)_q$ code with joint locality $\{r_l | 1 \le l \le d - 1\}$. Then C satisfies

$$k \leq \min_{\boldsymbol{l}_{[\boldsymbol{z}]}} \left[J_{\boldsymbol{z}} + k_{opt}^{(q)}(n - I_{\boldsymbol{z}}, d) \right],$$

where

- z is a positive integer such that $\sum_{i=1}^{z} r_{l_i} < k_i$
- $l_{[z]} = \{l_i | 1 \le l_i \le d 1, 1 \le i \le z\},$
- $J_z = \sum_{i=1}^z r_{l_i}$
- $I_z = \sum_{i=1}^{z} (r_{l_i} + l_i).$

Theorem 1 [Proposed]

Let C be an $(n, k, d)_q$ code with joint locality $\{r_l | 1 \le l \le d - 1\}$. Then C satisfies

$$k \leq \min_{l_{[z]}} \left[J_z + k_{opt}^{(q)} (n - I_z) d \right],$$

where

• z is a positive integer such that $\sum_{i=1}^{z} r_{l_i} < k$,

•
$$l_{[z]} = \{l_i | 1 \le l_i \le d - 1, 1 \le i \le z\},$$

•
$$J_z = \sum_{i=1}^z r_{l_i}$$

• $J_z = \sum_{i=1}^{Z} r_{l_i}$ • $I_z = \sum_{i=1}^{Z} (r_{l_i} + l_i).$

Remark 1 [Cadambe et al. 13]

Let C be an $(n, k, d)_q$ code with locality r. Then C satisfies

$$k \le \min_{z} \left[zr + k_{opt}^{(q)}(n - z(r+1), d) \right],$$

where

• z is a positive integer such that $z \leq \left[\frac{k}{r}\right] - 1$ ($\Leftrightarrow zr < k$).

Theorem 1 [Proposed] - example

$$k \leq \min_{l_{[z]}} \left[J_z + k_{opt}^{(2)}(n - I_z, d) \right],$$

Theorem 1 [Proposed] - example

Consider a $[63, 6, 32]_2$ simplex code with joint locality $\{r_1 = 2, r_2 = 3, ...\}$.

$$k \le \min_{l_{[z]}} \left[J_z + k_{opt}^{(2)}(n - I_z, d) \right],$$

Possible values $(\sum_{i=1}^{Z} r_{l_i} < k = 6)$

Theorem 1 [Proposed] - example

$$k \le \min_{l_{[z]}} \left[J_z + k_{opt}^{(2)}(n - I_z, d) \right],$$

Possible values $(\sum_{i=1}^{Z} r_{l_i} < k = 6)$					
Z	1	1	2	2	
$l_{[z]}$	{1}	{2}	{1,1}	{1,2}	

Theorem 1 [Proposed] - example

$$k \le \min_{l_{[Z]}} \left[J_{z} + k_{opt}^{(2)}(n - I_{z}, d) \right],$$

Possible values $(\sum_{i=1}^{Z} r_{l_i} < k = 6)$					
Z	1	1	2	2	
$l_{[z]}$	{1}	{2}	{1,1}	{1,2}	
J_Z	2	3	4	5	
I_{Z}	3	5	6	8	

Theorem 1 [Proposed] - example

$$k \le \min_{l[z]} \left[J_z + k_{opt}^{(2)} (n - I_z, d) \right],$$

Possible values $(\sum_{i=1}^{z} r_{l_i} < k = 6)$
 $z \qquad 1 \qquad 1 \qquad 2 \qquad 2$
 $J_{[z]} \qquad \{1\} \qquad \{2\} \qquad \{1,1\} \qquad \{1,2\}$
 $J_z \qquad 2 \qquad 3 \qquad 4 \qquad 5$
 $I_z \qquad 3 \qquad 5 \qquad 6 \qquad 8$
Using Plotkin bound
for $k_{opt}^{(2)}(\cdot)$, we have
 $k \le 6$
19

Theorem 2 [Proposed]

Let C be an $(n, k, d)_q$ code with joint locality $\{r_l | 1 \le l \le d - 1\}$. Then C satisfies

$$d \leq \min_{\boldsymbol{l}_{[Z]}} \left[d_{opt}^{(q)}(n - I_z, k - J_z) \right],$$

where

- z is a positive integer such that $\sum_{i=1}^{z} r_{l_i} < k$,
- $l_{[z]} = \{l_i | 1 \le l_i \le d 1, 1 \le i \le z\},$
- $J_z = \sum_{i=1}^z r_{l_i}$,
- $I_z = \sum_{i=1}^{z} (r_{l_i} + l_i).$

- Motivation (joint locality)
- Alphabet-dependent bounds
- Singleton-like bounds
- Graph-based BLRCs
- Conclusions

Singleton-like Bounds

Corollary 1 [Proposed]

Let C be an $(n, k, d)_q$ code with joint locality $\{r_l | 1 \le l \le d - 1\}$. Then C satisfies

$$d \le n - k + 1 - \max_{l_{[Z]}} \sum_{i=1}^{Z} l_i$$
 ,

No limit to the field size

where

- z is a positive integer such that $\sum_{i=1}^{z} r_{l_i} < k$,
- $\boldsymbol{l}_{[z]} = \{l_i | 1 \le l_i \le d 1, 1 \le i \le z\}.$

Singleton-like Bounds

$$\begin{array}{l} \textbf{Corollary 1 [Proposed]} \\ d \leq n - k + 1 - \max_{l_{[Z]}} \sum_{i=1}^{Z} l_i \\ l_i = l \\ r_{l_i} = r_l \\ \textbf{l_iocality} \\ l_i = 1 \\ r_{l_i} = r \\ \textbf{locality} \\ \textbf{l_i = 1} \\ r_{l_i} = k \end{array}$$

$$\begin{array}{l} \textbf{[Rawat et al. 14]} \\ \textbf{[Gopalan et al. 14]} \\ \textbf{[Gopalan et al. 14]} \\ \textbf{[Singleton bound]} \\ d \leq n - k + 1 - l\left(\left[\frac{k}{r_l}\right] - 1\right) \\ d \leq n - k - \left[\frac{k}{r_l}\right] + 2 \\ \end{array}$$

- Motivation (joint locality)
- Alphabet-dependent bounds
- Singleton-like bounds
- Graph-based BLRCs
- Conclusions

Graph-based BLRCs

Graph-based BLRCs

Codes	Joint locality	Graph	Generator matrix
$[3k - 3, k, 3]_2$ Tiara code [Proposed]	$(r_1, r_2)_{all} = (2, 3)$ $(r_1, r_2)_{info} = (2, 3)$		$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 &$
$[3k - 5, k, 3]_2$ Crown code [Kim et al. 15]	$(r_1, r_2)_{all} = (2, 4)$ $(r_1, r_2)_{info} = (2, 3)$		$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 &$
$[3k - 3, k, 3]_2$ Ring code [Kim et al. 15]	$(r_1, r_2)_{all} = (2, 4)$ $(r_1, r_2)_{info} = (2, 4)$		$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 &$

Graph-based BLRCs

Some optimal and almost optimal codes

Graph-based BLRCs	Theorem 1 [Proposed]	Theorem 2 [Proposed]	Remark 1 [Cadambe et al.]
[10, 4, 4] ₂ CG code	\checkmark	\checkmark	a.o.
[8, 4, 3] ₂ CMG code	\checkmark	\checkmark	\checkmark
[9, 4, 3] ₂ Tiara code	\checkmark	a.o.	a.o.
[10, 5, 3] ₂ Crown code	\checkmark	\checkmark	\checkmark
[6, 3, 3] ₂ Ring code	\checkmark	\checkmark	\checkmark
$[2^{k} - 1, k, 2^{k-1}]_{2}$ Simplex code	\checkmark	\checkmark	\checkmark

- Motivation (joint locality)
- Alphabet-dependent bounds
- Singleton-like bounds
- Graph-based BLRCs
- Conclusions

- Two alphabet-dependent bounds for LRCs with joint locality are proposed
- New graph-based BLRCs (Tiara codes) with good joint locality and high rate are proposed
- Some optimal and almost optimal codes with certain choice of parameters are found
- Optimal code construction with general parameters is open