Perfect polyphase sequences from cubic polynomials

Min Kyu Song Yonsei University

Supervisor: prof. Hong-Yeop Song

2017 Sino-Korea conference on coding theory and its related topics July 10-15, 2017 NIMS, KOREA

Polyphase sequences

- Polyphase sequence (root-of-unity sequence)
 - All the terms in the sequence are on the complex unit circle.
 - Identified by its phase sequence, e.g.,

$$\left\{e^{-j2\pi\frac{1}{4}}, e^{-j2\pi\frac{2}{4}}, e^{-j2\pi\frac{0}{4}}, e^{-j2\pi\frac{2}{4}}\right\}$$

$$\left\{1, 2, 0, 2\right\}$$

4-ary polyphase sequence of period 4

Min Kyu Song

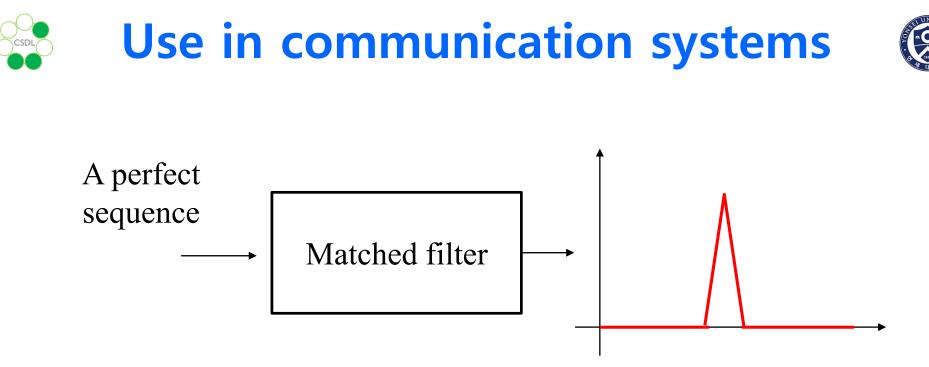
Correlation

Let x = {x(n)}^{L-1}_{n=0} and y = {y(n)}^{L-1}_{n=0} be two M-ary sequences of length L, then (periodic) correlation between x and y at time shift τ is

$$C_{\boldsymbol{x},\boldsymbol{y}}(\tau) = \sum_{n=0}^{L-1} \omega_M^{\boldsymbol{y}(n+\tau) - \boldsymbol{x}(n)}$$

where
$$\omega_M = e^{-\frac{j2\pi}{M}}$$
.

A sequence is referred to a perfect sequence if its autocorrelation is zero for any time shift τ ≠ 0 (mod L).

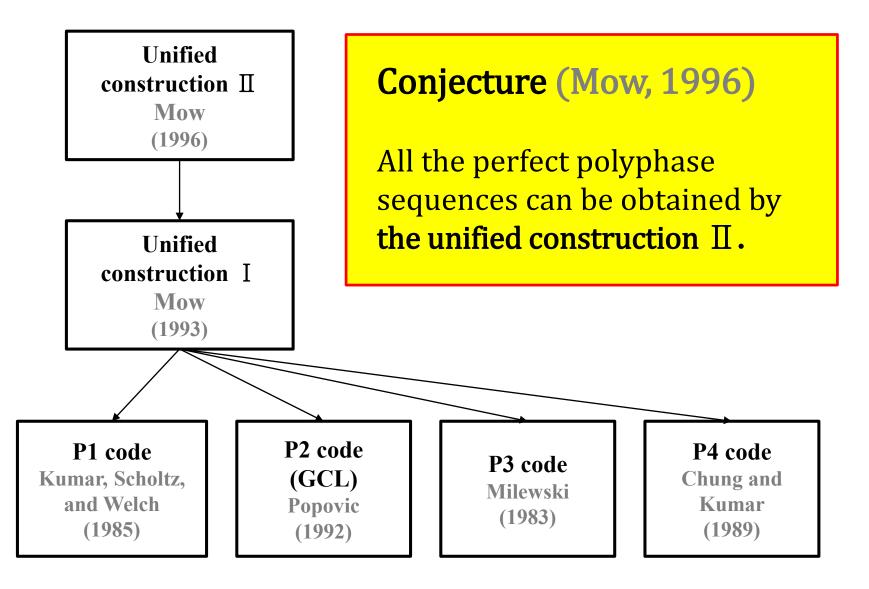


Applications

- Ranging
- Synchronization
- DS-CDMA
- etc.

Impulse-like output (Noise free)

Current state



• For an odd prime *p*, we will consider a polyphase sequence

$$\boldsymbol{f} = \{f(n)\}_{n=0}^{p^{k}-1}$$

where

$$f(n) = an^3 + bn^2 + cn + d$$

is a cubic polynomial with coefficients *a*, *b*, *c*, and *d*.

- We may let d = 0 since it does not affect autocorrelation.
- Our objectives
 - 1. When the sequence *f* becomes perfect.
 - 2. Relationship with a well-known class of perfect polyphase sequences, called Generalized Chirp-like (GCL) sequences.

• A p^k -ary Zadoff-Chu sequence of period p^k is defined by

$$\mathbf{z} = \left\{ z(n) = \frac{un(n+1)}{2} + qn \pmod{p^k} \right\}_{n=0}^{p^k-1}$$

where $u \not\equiv 0 \pmod{p}$ and q is a integer.

Proposition. If a ≡ 0 (mod p^k), b ≢ 0 (mod p), then
f = {f(n)}^{p^k-1}_{n=0} with
f(n) = an³ + bn² + cn
becomes a p^k-ary Zadoff-Chu sequence of period p^k with parameters u = 2b and q = c - 2b

• In this case, f(n) is actually of degree 2.

Min Kyu Song

For the case of $a \not\equiv 0 \pmod{p^k}$

• Theorem. Let $\mathbf{f} = \{f(n)\}_{n=0}^{p^k-1}$ with

$$f(n) = an^3 + bn^2 + cn.$$

- 1) Let p = 3. If $a \not\equiv 0 \pmod{p^k}$, $b \not\equiv 0 \pmod{p}$, then the sequence f is a perfect sequence of period p^k .
- 2) Let $p \ge 5$. If $a \not\equiv 0 \pmod{p^k}$, $b \not\equiv 0 \pmod{p}$, and $a \equiv 0 \pmod{p}$, then the sequence **f** is a perfect sequence of period p^k .

- In other choice of *a*, *b*, and *c*, *f* is not perfect.
 - There exists non-zero τ at which $C_f(\tau) = \sqrt{\gcd(3a\tau, p^k) p^k}$.

A proof

• Assume that $p \ge 5$, $a \not\equiv 0 \pmod{p^k}$, and $b \not\equiv 0 \pmod{p}$, $a \equiv 0 \pmod{p}$. Observe that

$$f(n + \tau) - f(n)$$

$$\equiv a(n + \tau)^{3} + b(n + \tau)^{2} + c(n + \tau) - [an^{3} + bn^{2} + cn]$$

$$\equiv 3a\tau n^{2} + (3a\tau^{2} + 2b\tau)n + \frac{\alpha}{\text{some constant}} \pmod{p^{k}}$$
Focus on the part ` $3a\tau n^{2} + (3a\tau^{2} + 2b\tau)n \pmod{p^{k}}$.

$$3a\tau n^{2} + (3a\tau^{2} + 2b\tau)n \pmod{p^{k}}$$

$$\leftrightarrow 3an^{2} + (3a\tau + 2b)n \pmod{\gamma}$$

$$\gamma = \frac{p^{k}}{\gcd(\tau, p^{k})}$$

$$\equiv 0 \pmod{p} \quad \neq 0 \pmod{p}$$

That is a quadratic permutation polynomial over the integers modulo $\frac{p^k}{\gcd(3\tau,p^k)}$

A proof (cont')

• The autocorrelation of \boldsymbol{f} at time shift $\tau \not\equiv 0 \pmod{p^k}$ is

$$C_{f}(\tau) = \sum_{n=0}^{L-1} \omega_{M}^{f(n+\tau)-f(n)}$$

$$= \omega_{pk}^{\alpha} \sum_{n=0}^{L-1} \omega_{pk}^{3a\tau n^{2}+(3a\tau^{2}+2b\tau)n}$$

$$= \omega_{pk}^{\alpha} \sum_{n=0}^{L-1} \omega_{\gamma}^{3an^{2}+(3a\tau+2b)n} \qquad \gamma = \frac{p^{k}}{\gcd(3\tau, p^{k})}$$

$$= \frac{p^{k}}{\gamma} \omega_{pk}^{\alpha} \sum_{n=0}^{\gamma-1} \omega_{\gamma}^{3an^{2}+(3a\tau+2b)n}$$

$$= \frac{p^{k}}{\gamma} \omega_{pk}^{\alpha} \sum_{n\in\mathbb{Z}_{\gamma}} \omega_{\gamma}^{\sigma(n)} = 0$$

Is that new?

- To show whether it is new or not, we need to compare it with previous known perfect polyphase sequences.
- For the first step toward that, we compare it with Generalized Chirp-like (GCL) sequences due to Popovic in 1992.
- Our result is that

Some of them are not GCL sequences.

A viewpoint - Extension of a ZC sequence

• The cubic polynomial f(n) can be written as

 $f(n) \equiv an^3 + bn^2 + cn$ $\equiv s(n) + z(n) \pmod{p^k}$

where

$$\mathbf{z} = \{z(n) = bn^2 + cn\}_{n=0}^{p^k - 1}$$

is the Zadoff-Chu sequence in the previous proposition since $b \not\equiv 0 \pmod{p}$, and

Therefore, we can view the sequence
$$f$$
 as a result of adding s

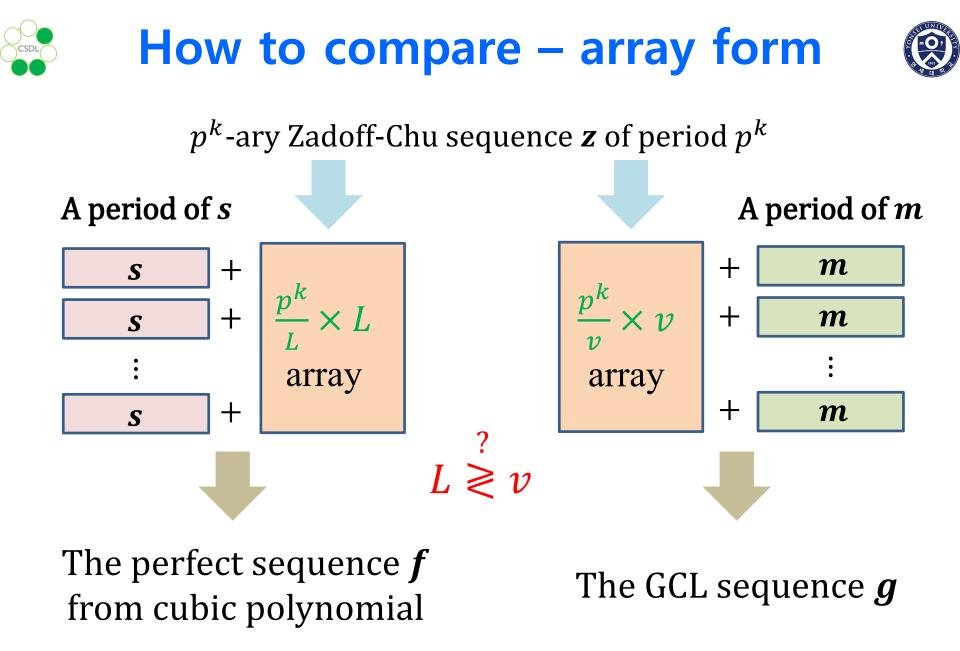
 $\mathbf{s} = \{s(n) = an^3\}_{n=2}^{p^k-1}$

Previous extension of a ZC sequence

- The Generalized chirp-like (GCL) sequence is a well-known extension of the Zadoff-Chu sequence.
- Let u, v are positive integers with $p^k = uv^2$.
- A p^k-ary GCL sequence g = {g(n)}_{n=0}^{p^k-1} of period p^k is the result of adding m to z
 - \mathbf{z} is a p^k -ary Zadoff-Chu sequence of period p^k .
 - *m* is arbitrarily chosen sequence of length *v*.

• Obviously,

$$v \leq p^{\lfloor k/2 \rfloor}.$$



Period of $\{an^3\}_{n=0}^{p^{\kappa}-1}$

• Lemma. Let *L* be the period of the sequence $s = \{s(n) = an^3\}_{n=0}^{p^k - 1}$

with $a \not\equiv 0 \pmod{p^k}$. Then, $L = \max\left(p^{\lfloor k/3 \rfloor}, \frac{p^k}{\gcd(3a, p^k)}\right).$

- Theorem. Consider the perfect sequence $f = \{f(n)\}_{n=0}^{p^{k}-1}$ from the cubic polynomial f(n).
 - Let p = 3 and write $a = 3^{i}t$ where t, i are some integers with gcd(t, 3) = 1 and $0 \le i \le k 1$. If $k \ge 3$ and

$$0 \le i < k - \left\lfloor \frac{k}{2} \right\rfloor - 1,$$

then, the sequence f is not a GCL sequence.

• Let $p \ge 5$ and write $a = p^i t$ where t, i are some integers with gcd(t,p) = 1 and $0 \le i \le k$. If $k \ge 4$ and

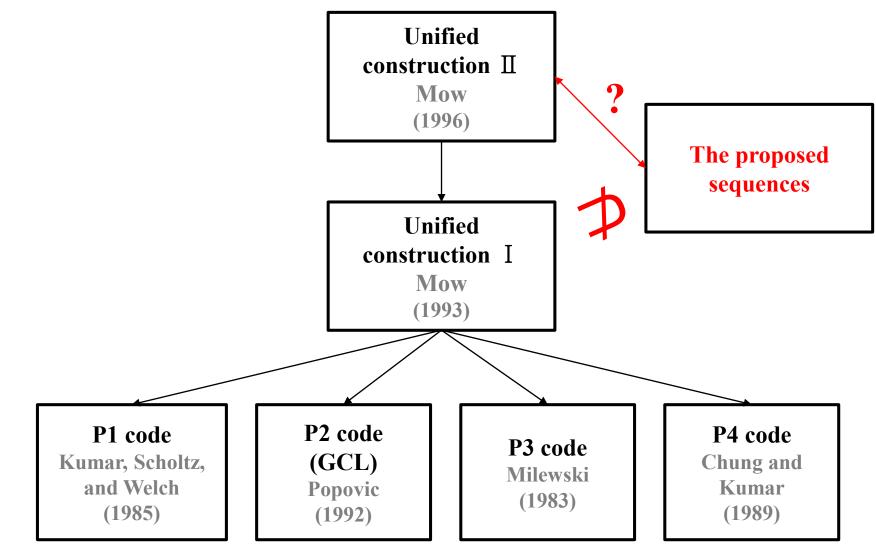
$$1 \le i < k - \left\lfloor \frac{k}{2} \right\rfloor,$$

then, the sequence f is not a GCL sequence.

Some interesting questions

- 1. Are they modulatable like GCL?
- 2. What is the crosscorrelation among them?
 - How can we construct optimal set of perfect sequence families from them?
- 3. Compare them with all the other known perfect sequences.

Is that really new?



Any question or comment?