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Dobbertin [3] studied the Kasami power function$ whered =  of {s2(t)}. If s1(t) = s2(t) + 1 (mod?2) for all t, then{s(¢)} is
22k _ 9% 1 1 with & < m and(k, m) = 1, and slightly modified called thecomplementf {s(t)}. If {s:1(t)} is a cyclic shift of any of
the setup in [10] by choosing the mappifig+ 1)? + 27 + 1 on Fo=  decimations or complement ¢ ()} or their combination, then they
instead of(z + 1)? + z%. He showed that the characteristic sequenare said to bequivalent Otherwise, they are said to beequivalent
of the nonzero images undér + 1)? + =7 + 1 on Fo can be char-  Given a binary sequende(t)} of period N, let D be the difference
acterized by a trace function and also derived the linear span of theés¢ween the number dfs and that of)’s in its period. We will callD
binary sequences. Finally, he gave a general conjecture that the clize-discrepancy ofs(t)}. The sequence is said to belancedf D is
acteristic sequence is balanced and has ideal autocorrelation. His aare whenX is even, and ifD is one whenV is odd. We will define
jecture covers some conjectures in [11]. it to bealmost balancedf D is 2. The absolute value dP is the same

Polynomials introduced in [3] and [10] can be generalized to gefor equivalent sequences.
eratebinary sequences of perigd™ — 1 with optimal autocorrelation ~ The periodic autocorrelation functigtir) of {s(¢)} is defined as
for any primep and an integem. For brevity, in this correspondence, ANt i
we will use F to denote the field of™ elements. Foe, b € F and a f(r) = Z(—l)s(”“(t“) (1)

positive integetl, consider the subset & given by _ i=0 _
where the sum+ 7 is computedmod N. Itis well known tha#(7) =

I(a, b) 2 {r le=(z4+1)"+az"+0, z € F} \{0}. N (mod4) and>""7'6(7) = D?, whereD is the discrepancy of
{s(t)}. Itis also well known that

The characteristic sequen¢e(t)} of the set/ (a, b) in F* is defined B(r) = N — 4[[T| = |1 0 (I + 7] @)

by s(t) = 1if o' € I(a, b) ands(t) = 0 otherwise, where is a
primitive element off". Clearly,{s(¢)} is a binary sequence of periodWhere
p™ — 1. For a proper choice af, b, andd it turns out to be (almost)

. . I={t|s(t)=1,0<t<N-1
balanced and have optimal autocorrelation as well as constant-on-the- {t1s) ST J

coset property. and
Forp > 2, Lempel, Cohn, and Eastman [6] had studied balanced
binary sequences of perigd® — 1 (which is even) with optimal au- I+7={t+7(mod N) |t €T}

tocorrelation. They considered the subSet= {a* ' — 1} of F*, _ _
wherea is a primitive element of’, and showed that the character-TWo equivalent sequences share the same set of autocorrelation values
istic sequence of is balanced, has optimal autocorrelation, and h&d their distribution. o
constant-on-the-coset property. They mentioned a method of using thd "€ optimality of a binary sequence of periad in the sense of
polynomialz(1 — =) to construct binary sequences and showed binafjtocorrelation means thaitax. - (meq ) [#(7)| is the least possible
m-sequences can be constructed by this method [6], [14], [17]. over all the binary sequences.of perllﬁd WhenN = 0 (mod4),

In this correspondence, we present a construction for binary §gerefore, the best one can think oftir) = 0 for all 7 # 0 (mod
quences{s(t)} of period NV = p™ — 1 for an odd primep based on N), which corresponds toirculant Hadamard matrices. This cannot

the polynomial(z+1)? +a=* 4+ b, and discuss them in some case§€ achieved for (aimost) balanced sequences of peviad 4, and,

of parametersp, m, d, a, and b. We show that new SequencesIhe_refore, the optimal autocorrelation in this case will be referred to
from our construction ardalancedor almost balancedand have Satisfyf(7)=0 or —4 forall 70 (mod ). WhenN =2 (mod 4),
optimal three-level autocorrelatiorior the case when the polynomial the bestidé(r)| =2 for all 7 # 0 (mod V), and will be referred to
(++1)"+2"+a can be transformed into the form — c. We also derive € optimal.- _ - _

the distribution of autocorrelation values they take on. The sequence§0r @ny? in the integeranod N = p™ — 1, we define the cyclo-
satisfy constant-on-the-cosegroperty, and we will show that there tomic cosetmod N containingt as {t, tp, tp?, tp°, ... }. A binary

are more than one characteristic phases with constant—on-the-cé@éluen0§{8(t)} of perlqu is said to have the constant-on-the-coset
property. Some other interesting properties of these sequences wilPs@Perty if, for somer, (¢, +7) = s(t>+7) whenever both, andt,
presented. For the cases when the polynofmiai1)?+ =% +a cannot belong to the same cyclotomlc. coset. A cyclic shiffeft) } with this

be transformed into the forat — ¢, we performed extensive computerProPerty is called its characteristic phase. Constant-on-the-coset prop-
search, and results are summarized. Based on these results, some @§é#s preserved by the equivalence relation.

problems are formulated.

In Section Il, we will review the equivalence relation and rando
ness properties of binary sequences. A formal setting of the new conket F' denote the field o™ elements and™ = F\{0}.Fora, b €
struction is given in terms of the polynomial + 1) + az? + b over I and a positive integef, let
F.The casel = 2is analy;ed in detail and ste cgsesalof: 3 gnd FOE2G+1) az' 40 3)
d=4 are shown to be equivalentto the (_:dse 2. Secnqn [ pro_\/ldes and define an index sé(a. b) in F~ to be
our main results. Randomness properties and other interesting proper- A
ties of new sequences are presented and some examples are given for I(a, b) = {f(2) | = € F}\{0}. (4)
illustration. A remark is given to discuss the relation with the resulfBhe binary sequence that we discuss in this correspondence is the char-
already covered by [6]. Section IV summarizes the result of our extesmeteristic sequencis.,»(t)} of the index sef (a, b) in F*, that is,

mB' Construction of Binary Sequences Using Polynomial

sive computer search with an interesting open problem and conjecture. R { 1. if o' € I(a. b)
sab(t) = o (5)
Il. PRELIMINARIES _ o 0,  otherwise _
. . . whereax is a primitive element of’. The sequenceés,, (t)} will also
A. Equivalence Relations and Randomness Properties be called the characteristic sequence 6f). We will restrict our dis-

Let{s(#)} and{s2(#)} be binary sequences of peridd If there is Cussion exclusively to the cage> 2 in the remaining of this corre-
a constant such thats, (t) = so(t + 7) for all t, then{s, (¢)} is said Spondence.
to be acyclic shiftof {s,(¢)}. If there exists: with (r, N) = 1 such Whend = 2, a simplification occurs as follows. Observe that
thats: (t) = s2(rt) for all ¢, then{s, (#)} is called ther-decimation )=+’ +az"+b=(a+1)2"+2:4+b+ 1.
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If « +1 = 0 then we havel(a, b)) = F~ for anyb. This implies
that{s.,»(t)} asin (5) is a constant sequencez H- 1 # 0, then, by
completing the square, we have

1 2
<“+EIT> Ta+l

Hence, the characteristic sequencef 0f) is a cyclic shift of that of
2% — ¢ for somec € F. This proves the following.

fz)=(a+1) +(b+1).

Proposition 1: Letp > 3,d = 2,anda, b € F witha + 1 # 0.

Then,{s.,»(#)} is a cyclic shift of the characteristic sequence of the

polynomialz* — ¢, wherec € F depends om andb.

By virtue of the above proposition, we may define, for short notati

L2 {*—c|zeF}\{0} (6)
{s.(t)} to be its characteristic sequenceFifi of periodN = p™ — 1,
andd.(7) its periodic autocorrelation function.

There are two more cases in whi¢h, »(#)} becomes a cyclic shift

of {s.(¢)} for somec € F.

Propostition 2: Letp > 5,d = 3, anda = —1. For any positive
integerm and anyb € F, {s4,5(t)} is a cyclic shift of{ s.(t)}, where
¢ € F depends on.

Proof: a + 1 = 0 andd = 3, the polynomial reduces as

F) =G4+ =2 4+0=3" 4324041

By completing the square, the result follows easily. O

Proposition 3: Letp = 3,d = 4, a = 1, andm be odd so that
N =37 —1=2(mod4).Foranyb € F,{sa,+(t)} is a cyclic shift
of {s.(t)}, wherec € F depends oh.

Proof: The polynomial reduces as
flz)= 4+ D 420 +0
=2z-1*+b-1
=2((z=1)>)*+b—1.
Sincem is odd so thatV = 3™ — 1 2 (mod4), the square of
(z—1)? again takes all the even powers of a primitive elements of
O
Proposition 4: Letp > 3,d = p™ —p™ ' —1,a = —1, and
b= 0. Then{s, »(t)} is equivalent to{ s.(¢)} for somec € F.
. nm—1 .
Proof: Sincez? = 277 , the polynomial reduces as
f)=~{yy+1}"
where we lety = 22" Sincer — y is a permutation, we are done.
O

If ¢ 0, then the characteristic sequence of becomes
010101 ..., and its autocorrelation is never optimal f§r> 4.
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thats.(t) is balanced (almost balanced, resp.) wheés a nonsquare
(square, resp.), and has optimal autocorrelation. We will also prove
some other interesting properties of these sequences.

Let C;, wherei = 0 or 1, be the cyclotomic class iR given by

C; {a%“ |s=0.1,.... N/2 - 1}.
In other words(s (C1, resp.) is the set of squares (nonsquares, resp.)

in F'*. For fixedi andj, the cyclotomic numbefi, j) is defined to be
the number of solutions of the equation

14z = zj
wherez; € C;, z; € C;. From the theory of cyclotomic numbers (cf.

OH.Q]), it is easy to determing, j) as in the following lemma.

Lemma 6 [19, Lemma 6]:The cyclotomic numbers are given as
follows:

b) if N = 0(mod 4), then
(0,0)=(p" - 5)/4
(0,1)=(1,0)=(L, 1) =(p" -1)/4
2 (mod4), then
(0,0)=(L0)=(11)= ("
(0, 1) = (p" + 1)/4.

c) if N
- 3)/4

Before we show the (almost) balance property and optimal autocor-
relation of{s.(¢)}, let us consider
2 {2 —clze F}\{0} @)
slightly modified fromI. by excludingz = 0 in (6). Define{s(t)}
to be its characteristic sequencefii of period N = p™ — 1, and
8% (7) its periodic autocorrelation function. Note thatcif 0, then
I7 = I.\{-c} and hencel| = |I.| — 1.

Theorem 7: Let{s.(¢)} and{s’(¢)} be the characteristic sequences

of I. andI’, respectively, of period = p™ — 1, anda be a primi-
tive element off’. Then, both{s (¢)} and{s:(¢)} are balanced, and
both{s.(¢)} and{s7(¢)} are almost balanced. Furthermore, we have
i) sn(t) =s1(t— 1)+ Lforall¢;ii) sa(t) =s7(t — 1)+ 1forall¢;
i) 5o (N/24+ 1) = 5,(N/2) = 1 ands,(t) = sa(t + 1) + 1 for
allt # N/2;and iv)s5(N/2 4+ 1) = s1(N/2) = 0 andsi(t) =
se(t+ 1)+ 1forallt # N/2.

Proof: Balance or almost balance property of the sequence
comes from the following:

I =(Co — D\{0} ofsizeN/2 -1
L ={-1}UI of size N/2
I, =Cy—« of size N/2

We now characterize how the index set changes as one sequtﬁﬂf@

is transformed into its equivalent sequence in the following lemma

without proof.

Lemma 5: Let o be a primitive element of’, the finite field of

sizep™. Let {s(t)} and {s'(¢)} be the characteristic sequences o

index setl andI’ in F*, respectively, both of period = p™ — 1,
then i)s’(t) = s(t — 7) for all ¢t if and only if I’ = "I for a con-
stantr, whereal 2 {ax | x € I};ii) s'(t) = s(rt) for all t, where
(r, N) = 1,ifand only if I’ = I°, whereer = 1(modN) and
s {¢ | « € I'}; and iii) ' (t) = s(t) + 1 (mod 2) for all ¢ if and
onlyif I'UI = F* andI’ N I = ¢, thatis,F* is partitioned intal’
andl.

I1l. RANDOMNESSPROPERTIES OFNEW SEQUENCES FROM:> — ¢

I, ={-a}UTI;

whereCy — ¢ 2 {x—c|z € Col}.
The statement i) comes froml; N I; = ¢ andal, U I, = F*

Txy Lemma 5. The statement ii) comes frdmN I = ¢ and|l.| =

If|+2 = N/2+1.SincenyUI, = F*,andali NI, = {—a},and
N/2+1

of sizeN/2 +1

o = —a«, the statement iii) follows easily. Similarly for iv).[J

When ¢ is a nonsquare{s.(t)} is a cyclic shift of{s.(¢)}, and
{s%(t)} is a cyclic shift of{ s, (¢)} by Lemma 5. Wher is a square,
similarly, {s.(¢)} is a cyclic shift of{s:(¢)} and{s;(¢)} is a cyclic
shift of {s7(¢)}. Therefore, it is enough to consid¢si(#)} and
{s%(¢)} in order to discuss the optimal autocorrelation property of
{sc(t)} by Theorem 7.

Lemma 8: For anyr # 0(mod N) such thatl — o™ € C; and
a” € C;, we have

We recall the definition of . in (6) and its characteristic sequence

m

sc(t) in F* of period N = p™ — 1. In this section, we will prove

[IZNna I =0G+j7+1,i+1).
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TABLE |
BINARY SEQUENCES OFPERIOD N = 12
I name sequence D | #(0.(7) =0) | #(8:(7) = —4) || Relation
{s3(t)} | 010110011000 | 2 9 2 si(t) =s3(t+1) + 1Vt # N/2
{s2(t)} | 110100110011 | 2 9 2 so(t) = st(t—1)+ 1Vt
{s1(£)} | 010110111000 | 0 8 3 51(t) = so(t+ 1) + 1 Vi £ N/2
{s3(t)} | 110100100011 | 0 8 3 s3) =s1(t—1) + 1Vt
TABLE I
BINARY SEQUENCES OFPERIOD N = 26
‘ name sequence D | #(0.(r) =-2) | #(0.(r) = 2)—|
{s1(¢)} | 00100110100001010111100111 | O 19 6
{s«(t)} | 01101100101111110100001100 | 2 18 7
Proof: Forz € I; N«" I, we can write downr = y — o for Theorem 12: The sequence§s; (¢)} and{s.(t)} of period N are
y € Cop andz = o (z — «a) for z € Cy. Thus, we have almost balanced and have optimal autocorrelation. Specifically, for
0 (mod V)

o’z Y

1 = .
+ a(l—a™) ol —am)

. —4e, if N =0(mod4)
6 (T) =

The lemma follows from the relation 2-4e, N =2(modd)
y wheree € {0, 1}.

€Citjy1 and ———— € Ciyy Proof: The proof follows from (2), Theorem 7, and Lemmas 6
a(l —a7)

‘ ’ and 11. O
forl —a™ € C;anda” € C;. O

o’z

a(l —am)

Example 13: Letp = 13 andm =1 so thatN = 12 =0 (mod 4).
Theorem 9: The sequencegs(t)} and {si(¢)} of period N Itis easy to check that is a primitive rootmod 13. Then, we obtain
are balanced and have optimal autocorrelation. Specifically; fgr  two inequivalent sequences as shown in Table I. Observe all four rela-

0 (mod V) tions given in Theorem 7.
. —4e, if N =0(mod4) Example 14: Letp = 3 andm = 3 so thatV = 26 = 2 (mod 4).
6.(1) = _ N Leta € F be primitive witha® 4+ 2o + 1 = 0. Then, we obtain two
2 - de, if N'= 2 (mod4) inequivalent sequences as shown in Table II.

wheree € {0, 1}. Example 15: Letp = 5 andm = 2 so thatV = 24 = 0 (mod 4).
Leto € F be primitive witha? 4+ a + 2 = 0. Then, we obtain two
inequivalent sequences as shown in Table lII.

Remark 10:In [6], Lempel, Cohn, and Eastman considered the
characteristic sequende(t)} of the set

Proof: It follows from (2), Theorem 7, and Lemmas 6 and(8.

Theorem 16: For v andv shown in Table IV,{s.(#)} has the fol-
lowing distribution:

S={a®" —1]i=0,1,... N/2-1}. ; { 0 (+2,resp), foru values ofr

Clearly,5 = a~'(Cy — o) ands(t) = s%(++ 1). Therefore, their se- —4 (-2, resp),  forwv values ofr
quence is a cyclic shift of s, (¢) }, and our approach using cyclotomicwhen N = 0 (mod 4) (N = 2 (mod 4), resp.).

numbers gives another simple proof of the construction in [6]. Proof: It can be shown easily by solving two simultaneous equa-
Lemma 11: For anyr % 0 (mod N) such thatl — a” € C; and tions. WhenN = 0 (mod 4) ands.(t) is balanced, we have
o € C}, we have N+0u+(-4dv=0
I N oI | = (i +j, i) — 1. utv+1=N

Proof: Fora € IF N a”I7, we can write down: = y — 1 for Whichgivesu = (3N —4)/4andv = N/4.The other cases are proved
y € Co\{1} andx = a"(z — 1) for = € Co\{1}. Thus, we have similarly. .
Theorem 17: The sequence§s: (¢)} and{s.(t + 1)} are in char-
acteristic phase. Furthermore, the cyclic shift§ of(t) } and{s.(t +

1)} by every integer multiple of" are in characteristic phase, where
Note that the solutiony, z) = (1, 1) is not allowed. Therefore, the 7 2 (™ = 1)/(p—1).

"z oy
l—ar 1-—a7’

1+

lemma comes from the relation Proof: The periodV =p™—1 and observe thdp =T (mod N).
o’z Y Let & be an integer. Then
p S Ci+]' and - e C; ) - )
1—«o 11—« 31(t—kT):1<:}>(1 =z"—1€I, some:z

forl —a” € ¢, anda” € C;. O L = o
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TABLE Il
BINARY SEQUENCES OFPERIOD NV = 24
name sequence ‘ D ‘ #(0.(r)=0) | #(0c(r) =-4)
{s1(¢)} | 100100101000110111110001 | O 17 6
{sa(t)} | 001101101011110100000111 | 2 18 5
TABLE IV TABLE V
DISTRIBUTION OF AUTOCORRELATIONVALUES OF {s.(#)} THE VALUES OF d FOR WHICH THERE EXISTS SOME (@ # 0, b) SUCH
THAT AN (ALMOST) BALANCED SEQUENCE OFPERIODN = p — 1
balanced (D = 0) | almost balanced (D = 2) WITH OPTIMAL AUTOCORRELATION EXISTS
N=0 (mod4) [u=(3N-4)/4 |u=3N/4 p |l d
U=N/4 ’U=(N-4)/4 5 2,3,4
v=(N-2)/4 Jv=(N+2)/4 11 2,3,4,5,6,7,8,9
. 13 [ 2,3,4,5,6,7,8,9,10,11
For the sequencgs. (t + 1)}, we have the following: 171 2,3.4.6.7.9,11,12, 13, 14, 15
sa(t—kT+1)=1&a" " "T'=2" —ael, some: 19 | 2,3,4,5,7,8,10,11,14,15,17
—kTp+p p p
Sl =2 o 23 || 2,3,12,15,17, 21
L AR e P SO XY A 29 || 2,3,15,19,27
IV. RESULT OFCOMPUTER SEARCH AND CONCLUDING REMARKS 31| 2,3,16,18,29
In this section, we summarize the result of an extensive computer 37 2,3,19,35
search and discuss some miscellaneous cases. The computer search was 41| 2,3,21,27,39
restricted to the case of balanced or almost balanced binary sequences 43|23 22 41
o . H d d 1Y ’
{54, (%)} with optimal autocorrelation generated 1) +az“+b
as in Section Il. Forr = 1, we were able to search completely for 47 | 2,3,24,31,45
odd primes up t®7. For odd primeg up to 19 and appropriaten 53 || 2,3,27,35,51
(manageable by Pentium PC), we have tried every posséifotem 2 to =0 |l 2.3.30.39 57
N —1landalle € F* andb € F. Observe that it is enough to consider Rt

coset representatives fdrsince 61 | 2,3,31,59
(z+ D 4 qP % 4P = (2P + l)d + al(;p)d +0 67 ]| 2,3,34,65
71 || 2,3,36,47,69
and: — z? is a permutation of". 312337 71
We present the result of our computer search in three tables. Tables V P
and VI show the values of for which there exists som@ # 0, b) 79| 2,3,40,77
such that a balanced (or an almost balanced or both) binary sequence 83 |l 2,3,42, 55,81

with optimal autocorrelation exists. No other valuesiaf this range
produce (almost) balanced binary sequences with optimal autocorrela-
tion. We have omitted the result of the computer search with the value 97 || 2,3,49,95
a = 0 included due to the limited space simply because too many
values ofd have popped up. It turned out that inequivalent binary se-
guences with the same discrepan@yexists (includinga = 0) for becomes
some short lengths. Table VIl shows all the inequivalent classes of pe-
riod N = p—1for5 < p < 97. Forp = 19, we have found three f(z)= {(—:)N/2 + (24 1)1\’7/2} s+ b+ (2 + 1)V
inequivalent classes with = 2 (almost balanced). We conjecture thaﬁzirst,f(o) = b+1andf(—1) = b— 1. Forall other values of € F,
no further multiple inequivalence classes existfor 97, but we shall ’
remain this as a future research topic.

Besides all the parameter sets(ef b, d, p) so far discussed, one

89 || 2,3,45,59,87

we have the following expression, where the ordered @aiy) for
i, j € {0, 1} denotes the cyclotomic number given in Lemma 6:

more case of interest comes from the computer search. In this case, we N/2 3
were currently able to show only the (almost) balance property of the (1 +(=1) ! ) 2+b+1, (0,0) values of:
characteristic sequences: (_1 + (_1)N/2> S b—1, (0,1) values of:
Theorem 18: The characteristic sequence of perifgd= p™ — 1 of flz)=

I(a, b)ford = (p™ +1)/2,a = (=1)*"', andb = +1 is balanced (1 - (—1)“'/2) z+b+1, (1,0) values of:
whenN = 0 (mod 4) and is almost balanced whéh = 2 (mod 4).

For a givenN, the sequence fdr = 1 is a cyclic shift of that for (—1 - (—1)N/2> z+b-1,  (1,1)values of:.
b= -1.

Proof: Note that forz € F* we haver™/? = 1 whenz € C;  Therefore, we have the table of valuesfat)/2 for all = in F at the
andz"™/? = —1 when z € Cy. Therefore, the polynomialf(z) bottom of the following page. Consider the cdée= 0 (mod 4) and
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TABLE VI

1643

THE VALUES OF d FOR WHICH THERE EXISTS SOME (@ # 0, b) SUCH THAT AN (ALMOST) BALANCED SEQUENCE OFPERIOD N = p™ — 1 (m > 2) WITH

OPTIMAL AUTOCORRELATION EXISTS

pm|{N=pm-1|d
312 8 2,4,5,7
3 26 2,4,10,14,16,17,22,23,25
4 80 2,14, 41,43,46,49,53,58,67,71,77,79
5 242 2,4,10,14,28,82,122,124,130, 136, 148, 161, 166, 202, 215, 233, 239, 241
5|2 24 2,3,6,7,11,13,17,19, 23
3 124 2,3,6,26,43,63,67,83,87,91,99,119,123
4 624 2,3,63,313, 317, 327, 337, 387, 437,499, 599, 619, 623
7|2 48 2,3,25,31,41,47
3 342 2,3,8,50,172,178,220,293, 335, 341
11| 2 120 2,3,61,71,109,119
13| 2 168 2,3,85,97,155,167
17 | 2 288 2,3,145,161, 271,287
19 2 360 2,3,181,199, 341, 359

TABLE VII

THE INEQUIVALANCE CLASSES OFBINARY SEQUENCES OFLENGTHp — 1 FOR5 < p < 97 WITH OPTIMAL AUTOCORRELATION AND THE SAME DISCREPANCY D

D) p| d| (ab) | inequivalent sequences

01[13] 2| (0,1) || 111000010110
9 | (12,0 || 101011011000
20l 7|5 (1,1) | 111100
3 | (0,1) || 101000
11} 3| (1,1) || 1110011010
5 | (1,1) || 1100010010
13| 4 | (1,3) || 011100001001

11| (2,0) || 110000011010

19| 2 | (0,1) || 110100100110001111
11 (2,2) || 111000101110010110
13| (8,3) || 011110120000110101

N=0 (mod 4) N=2 (mod 4)

b=1 b=-1 b=1 b=-1 # of times
1 0 1 0 once at: =0
0 -1 0 -1 once at: = —1

z4+1 z 1 0 (0, 0) times
0 -1 -z —(z+1) (0, 1) times
1 0 z+1 z (1, 0) times
-z —(z+1) 0 -1 (1, 1) times
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b = 1. The index sef must be of the forrd = A U B U C where [18] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levipread
Spectrum Communications Rockville, MD: Computer Science Press,
A={1} 1985, vol. 1. Revised edition: New York: McGraw-Hill, 1994.
[19] T. Storer,Cyclotomy and Difference Sets (Lecture Notes in Advanced
B={z+1|2€Co, z+1€ (o} Mathematics) Chicago, IL: Markham, 1967.
and [20] Mobile Station-Base Station Compatibility Standard for Dual-Mode
Wideband Spread Spectrum Cellular SystemIA-EIA-IS-95,
C={-z2|2€Ci, z+1€C}. Telecommun. Ind. Assoc. as a North American 1.5 MHz Cellular

CDMA Air-Interface Std., July 1993.
Observe that these three sets are pairwise-disjoint. Therefore,

Il =1+|B|+|C| =1+ (N/4—=1)+ N/4 = N/2.

The other cases can be treated similarly. O
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