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number of “1”s; such codeword candidates are located inT kA at ad-
dresses that are 256 apart. Furthermore, both codeword candidates label
edges that terminate in the same state and, therefore, replacement of a
codeword with its alternate can be done locally within a generated se-
quence of codewords without affecting preceding or following code-
words. This simple encoding mechanism follows from the fact that
codewords generated from any given state are located in acontiguous
segment ofT kA. This applies also toE(3; 10) if we regard only entries
that are located at addresses of the form3 + 4t.

In order to obtain DC control, we need to be able to generate more
than 64 codewords from certain states inE(3; 10), and more than 256
codewords inE(2; 10). Consider, for example, the codewords that can be
generated from statesu � d1. While in Section III-B we have restricted
the generated codeword to be taken only fromA, here we allow the
codeword to be alsoT (j) as long aski � `(j) � u. Also, observe
that in all instances where a codeword'i(T (j)) can be generated we
necessarily havè(T (j)) = �i + 1 and, so,'i(T (j)) = A(j).

Yet, on the other hand, we require that two codeword candidates for
the same input tag have different parity, label edges that terminate in the
same state, and be located inT kA at addresses 256 apart. Due to those
conditions, only 53 entries inA are accessible byE(3; 10), compared to
64 entries in Section III-B.

A block decoderwww 7! D(2; 10)(www) of E(2; 10) is obtained by
deleting the two most significant bits of the 10-bit address of the entry
in T kA that contains the codewordwww. When restricted to the domain
�(E(3; 10)), this is also a block decoder ofE(3; 10), with the range
consisting of bytes having least significant bits “11.”

The encoderE(3; 10) is weakly observable fromE(2; 10). Nesting and
full observability can be attained if we do not exclude the 28-bit pattern
“00010001 � � � 0001” from appearing in the bit stream; we then need
to slightly modifyT kA and unmerge state[2; 5] in E(2; 10) into states
2 and[3; 5].

The power spectral densities of the two encoders are shown in
Fig. 2. We have used the same scaling of the axes as in [9] and applied
the same local optimization (through encoding look-ahead) when
selecting the generated codeword between two codeword candidates.
The power spectral density ofE(2; 10) is virtually the same as that of
the(2; 10)-RLL encoder in [9].
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autocorrelationfor the case when the polynomial( +1) + + can be
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correlation values they take on. The sequences satisfyconstant-on-the-coset
property, and we will show that there are more than one characteristic
phases with constant-on-the-coset property. Some other interesting prop-
erties of these sequences will be presented. For the cases when the polyno-
mial ( +1) + + cannot be transformed into the form , we
performed extensive computer search, and results are summarized. Based
on these results, some open problems are formulated.
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I. INTRODUCTION

Pseudorandom binary sequencesfs(t)g, where s(t) 2 f0; 1g,
of period N are widely used in many areas of engineering and
sciences due to their randomness but simplicity in their generation.
Some well-known applications include code-division multiple-access
(CDMA) mobile communications and stream-cipher systems. Re-
cently, there has been a lot of progress in constructing balanced binary
sequences of period2m � 1 with ideal autocorrelation [2], [3], [10],
[11]. The idea of the (new) construction is to use a special polynomial
over finite fields.

For convenience, letFp denote the field ofpm elements and
F �

p = Fp nf0g. Forp = 2, No, Chung, and Yun [10] studied char-
acteristic sequences of period2m � 1 of the nonzero images under the
mapping(z+1)d+ zd onF2 for an integerd. They conjectured that
the characteristic sequence is balanced and has ideal autocorrelation
in the case wherem = 3k � 1 andd = 22k � 2k + 1, which is
inequivalent tom-sequences. They also proved thatm-sequences can
be described in this sense. Dillon [2] proved that the conjecture is true
for all oddm.
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Dobbertin [3] studied the Kasami power functionsxd whered =
22k � 2k + 1 with k < m and(k; m) = 1, and slightly modified
the setup in [10] by choosing the mapping(z + 1)d + zd + 1 onF2

instead of(z + 1)d + zd. He showed that the characteristic sequence
of the nonzero images under(z + 1)d + zd + 1 onF2 can be char-
acterized by a trace function and also derived the linear span of these
binary sequences. Finally, he gave a general conjecture that the char-
acteristic sequence is balanced and has ideal autocorrelation. His con-
jecture covers some conjectures in [11].

Polynomials introduced in [3] and [10] can be generalized to gen-
eratebinary sequences of periodpm � 1 with optimal autocorrelation
for any primep and an integerm. For brevity, in this correspondence,
we will useF to denote the field ofpm elements. Fora; b 2 F and a
positive integerd, consider the subset ofF � given by

I(a; b)
�
= x j x = (z + 1)d + az

d + b; z 2 F nf0g:

The characteristic sequencefs(t)g of the setI(a; b) in F � is defined
by s(t) = 1 if �t 2 I(a; b) ands(t) = 0 otherwise, where� is a
primitive element ofF . Clearly,fs(t)g is a binary sequence of period
pm � 1. For a proper choice ofa; b; andd it turns out to be (almost)
balanced and have optimal autocorrelation as well as constant-on-the-
coset property.

For p > 2, Lempel, Cohn, and Eastman [6] had studied balanced
binary sequences of periodpm � 1 (which is even) with optimal au-
tocorrelation. They considered the subsetS = f�2i+1 � 1g of F �,
where� is a primitive element ofF , and showed that the character-
istic sequence ofS is balanced, has optimal autocorrelation, and has
constant-on-the-coset property. They mentioned a method of using the
polynomialz(1� z) to construct binary sequences and showed binary
m-sequences can be constructed by this method [6], [14], [17].

In this correspondence, we present a construction for binary se-
quencesfs(t)g of periodN = pm�1 for an odd primep based on
the polynomial(z+1)d+ azd+ b, and discuss them in some cases
of parametersp; m; d; a; and b. We show that new sequences
from our construction arebalancedor almost balancedand have
optimal three-level autocorrelation, for the case when the polynomial
(z+1)d+zd+a can be transformed into the formz2�c. We also derive
the distribution of autocorrelation values they take on. The sequences
satisfy constant-on-the-cosetproperty, and we will show that there
are more than one characteristic phases with constant-on-the-coset
property. Some other interesting properties of these sequences will be
presented. For the cases when the polynomial(z+1)d+zd+a cannot
be transformed into the formz2�c, we performed extensive computer
search, and results are summarized. Based on these results, some open
problems are formulated.

In Section II, we will review the equivalence relation and random-
ness properties of binary sequences. A formal setting of the new con-
struction is given in terms of the polynomial(z + 1)d + azd + b over
F . The cased = 2 is analyzed in detail and some cases ofd = 3 and
d = 4 are shown to be equivalent to the cased = 2. Section III provides
our main results. Randomness properties and other interesting proper-
ties of new sequences are presented and some examples are given for
illustration. A remark is given to discuss the relation with the results
already covered by [6]. Section IV summarizes the result of our exten-
sive computer search with an interesting open problem and conjecture.

II. PRELIMINARIES

A. Equivalence Relations and Randomness Properties

Letfs1(t)g andfs2(t)g be binary sequences of periodN . If there is
a constant� such thats1(t) = s2(t+ � ) for all t, thenfs1(t)g is said
to be acyclic shiftof fs2(t)g. If there existsr with (r; N) = 1 such
thats1(t) = s2(rt) for all t, thenfs1(t)g is called ther-decimation

of fs2(t)g. If s1(t) = s2(t) + 1 (mod2) for all t, thenfs1(t)g is
called thecomplementof fs2(t)g. If fs1(t)g is a cyclic shift of any of
decimations or complement offs2(t)g or their combination, then they
are said to beequivalent. Otherwise, they are said to beinequivalent.

Given a binary sequencefs(t)g of periodN , letD be the difference
between the number of1’s and that of0’s in its period. We will callD
the discrepancy offs(t)g. The sequence is said to bebalancedif D is
zero whenN is even, and ifD is one whenN is odd. We will define
it to bealmost balancedif D is 2. The absolute value ofD is the same
for equivalent sequences.

The periodic autocorrelation function�(�) of fs(t)g is defined as

�(�)
�
=

N�1

i=0

(�1)s(t)+s(t+�) (1)

where the sumt+� is computedmodN . It is well known that�(�) �
N (mod4) and N�1

�=0 �(�) = D2, whereD is the discrepancy of
fs(t)g. It is also well known that

�(�) = N � 4 [jIj � jI \ (I + � )j] (2)

where

I = ft j s(t) = 1; 0 � t � N � 1g

and

I + � = ft+ � (modN) j t 2 Ig:

Two equivalent sequences share the same set of autocorrelation values
and their distribution.

The optimality of a binary sequence of periodN in the sense of
autocorrelation means thatmax� 6�0 (mod N) j�(� )j is the least possible
over all the binary sequences of periodN . WhenN � 0 (mod4),
therefore, the best one can think of is�(�) = 0 for all � 6� 0 (mod
N), which corresponds tocirculant Hadamard matrices. This cannot
be achieved for (almost) balanced sequences of periodN > 4, and,
therefore, the optimal autocorrelation in this case will be referred to
satisfy�(�)=0 or�4 for all � 6�0 (modN). WhenN �2 (mod 4),
the best isj�(� )j= 2 for all � 6� 0 (modN), and will be referred to
be optimal.

For anyt in the integersmodN = pm � 1, we define the cyclo-
tomic cosetmodN containingt asft; tp; tp2; tp3; . . . g. A binary
sequencefs(t)g of periodN is said to have the constant-on-the-coset
property if, for some� , s(t1+� ) = s(t2+� ) whenever botht1 andt2
belong to the same cyclotomic coset. A cyclic shift offs(t)g with this
property is called its characteristic phase. Constant-on-the-coset prop-
erty is preserved by the equivalence relation.

B. Construction of Binary Sequences Using Polynomial

LetF denote the field ofpm elements andF � = Fnf0g. Fora; b 2
F and a positive integerd, let

f(z)
�
= (z + 1)d + az

d + b (3)

and define an index setI(a; b) in F � to be

I(a; b)
�
= ff(z) j z 2 Fgnf0g: (4)

The binary sequence that we discuss in this correspondence is the char-
acteristic sequencefsa; b(t)g of the index setI(a; b) in F �, that is,

sa; b(t)
�
=

1; if �t 2 I(a; b)

0; otherwise
(5)

where� is a primitive element ofF . The sequencefsa; b(t)gwill also
be called the characteristic sequence off(z). We will restrict our dis-
cussion exclusively to the casep > 2 in the remaining of this corre-
spondence.

Whend = 2, a simplification occurs as follows. Observe that

f(z) = (z + 1)2 + az
2 + b = (a+ 1)z2 + 2z + b+ 1:
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If a + 1 = 0 then we haveI(a; b) = F � for any b. This implies
thatfsa; b(t)g as in (5) is a constant sequence. Ifa + 1 6= 0, then, by
completing the square, we have

f(z) = (a+ 1) z +
1

a+ 1

2

�
1

a+ 1
+ (b+ 1):

Hence, the characteristic sequence off(z) is a cyclic shift of that of
z2 � c for somec 2 F . This proves the following.

Proposition 1: Let p � 3, d = 2, anda; b 2 F with a + 1 6= 0.
Then,fsa; b(t)g is a cyclic shift of the characteristic sequence of the
polynomialz2 � c, wherec 2 F depends ona andb.

By virtue of the above proposition, we may define, for short notation

Ic
�
= z2 � c j z 2 F nf0g (6)

fsc(t)g to be its characteristic sequence inF � of periodN = pm� 1,
and�c(� ) its periodic autocorrelation function.

There are two more cases in whichfsa; b(t)g becomes a cyclic shift
of fsc(t)g for somec 2 F .

Propostition 2: Let p � 5, d = 3, anda = �1. For any positive
integerm and anyb 2 F , fsa; b(t)g is a cyclic shift offsc(t)g, where
c 2 F depends onb.

Proof: a + 1 = 0 andd = 3, the polynomial reduces as

f(z) = (z + 1)3 � z3 + b = 3z2 + 3z + b+ 1:

By completing the square, the result follows easily.

Proposition 3: Let p = 3, d = 4, a = 1, andm be odd so that
N = 3m � 1 � 2 (mod 4). For anyb 2 F , fsa; b(t)g is a cyclic shift
of fsc(t)g, wherec 2 F depends onb.

Proof: The polynomial reduces as

f(z) = (z + 1)4 + z4 + b

= 2(z � 1)4 + b� 1

= 2((z � 1)2)2 + b� 1:

Sincem is odd so thatN = 3m � 1 � 2 (mod4), the square of
(z�1)2 again takes all the even powers of a primitive elements ofF .

Proposition 4: Let p � 3, d = pm � pm�1 � 1, a = �1, and
b = 0. Thenfsa; b(t)g is equivalent tofsc(t)g for somec 2 F .

Proof: Sincezd = z�p , the polynomial reduces as

f(z) = �fy(y + 1)g�1

where we lety=zp . Sincez!y is a permutation, we are done.

If c = 0, then the characteristic sequence ofz2 becomes
010101 . . . ; and its autocorrelation is never optimal forN � 4.

We now characterize how the index set changes as one sequence
is transformed into its equivalent sequence in the following lemma
without proof.

Lemma 5: Let � be a primitive element ofF , the finite field of
size pm. Let fs(t)g and fs0(t)g be the characteristic sequences of
index setI andI 0 in F �, respectively, both of periodN = pm � 1;
then i)s0(t) = s(t � � ) for all t if and only if I 0 = ��I for a con-
stant� , whereaI

�
= fax j x 2 Ig; ii) s0(t) = s(rt) for all t, where

(r; N) = 1, if and only if I 0 = Ie, whereer � 1 (modN) and
Ie

�
= fxe j x 2 Ig; and iii) s0(t) = s(t) + 1 (mod 2) for all t if and

only if I 0 [ I = F � andI 0 \ I = �, that is,F � is partitioned intoI 0

andI .

III. RANDOMNESSPROPERTIES OFNEW SEQUENCES FROMz2 � c

We recall the definition ofIc in (6) and its characteristic sequence
sc(t) in F � of periodN = pm � 1. In this section, we will prove

thatsc(t) is balanced (almost balanced, resp.) whenc is a nonsquare
(square, resp.), and has optimal autocorrelation. We will also prove
some other interesting properties of these sequences.

LetCi, wherei = 0 or 1, be the cyclotomic class inF given by

Ci = �2s+i j s = 0; 1; . . . ; N=2� 1 :

In other words,C0 (C1, resp.) is the set of squares (nonsquares, resp.)
in F �. For fixedi andj, the cyclotomic number(i; j) is defined to be
the number of solutions of the equation

1 + zi = zj

wherezi 2 Ci, zj 2 Cj . From the theory of cyclotomic numbers (cf.
[19]), it is easy to determine(i; j) as in the following lemma.

Lemma 6 [19, Lemma 6]:The cyclotomic numbers are given as
follows:

b) if N � 0 (mod 4), then
(0; 0) = (pm � 5)=4

(0; 1) = (1; 0) = (1; 1) = (pm � 1)=4;

c) if N � 2 (mod 4), then
(0; 0) = (1; 0) = (1; 1) = (pm � 3)=4

(0; 1) = (pm + 1)=4:

Before we show the (almost) balance property and optimal autocor-
relation offsc(t)g, let us consider

I�c
�
= z2 � c j z 2 F � nf0g (7)

slightly modified fromIc by excludingz = 0 in (6). Definefs�c(t)g
to be its characteristic sequence inF � of periodN = pm � 1, and
��c (�) its periodic autocorrelation function. Note that ifc 6= 0, then
I�c = Icnf�cg and hencejI�c j = jIcj � 1.

Theorem 7: Letfsc(t)gandfs�c(t)gbe the characteristic sequences
of Ic andI�c , respectively, of periodN = pm � 1, and� be a primi-
tive element ofF . Then, bothfs��(t)g andfs1(t)g are balanced, and
bothfs�(t)g andfs�1(t)g are almost balanced. Furthermore, we have
i) s��(t) = s1(t� 1) + 1 for all t; ii) s�(t) = s�1(t� 1) + 1 for all t;
iii) s�(N=2 + 1) = s1(N=2) = 1 ands1(t) = s�(t + 1) + 1 for
all t 6= N=2; and iv) s��(N=2 + 1) = s�1(N=2) = 0 ands�1(t) =
s��(t + 1) + 1 for all t 6= N=2.

Proof: Balance or almost balance property of the sequence
comes from the following:

I�1 =(C0 � 1)nf0g of sizeN=2� 1

I1 = f�1g [ I�1 of sizeN=2

I�� =C0 � � of sizeN=2

and

I� = f��g [ I�� of sizeN=2 + 1

whereC0 � c
�
= fx � c j x 2 C0g.

The statement i) comes from�I1 \ I�� = � and�I1 [ I�� = F �

by Lemma 5. The statement ii) comes fromI� \ �I�1 = � andjI�j =
jI�1 j+2 = N=2+1. Since�I1[I� = F �, and�I1\I� = f��g, and
�N=2+1 = ��, the statement iii) follows easily. Similarly for iv).

When c is a nonsquare,fsc(t)g is a cyclic shift offs�(t)g, and
fs�c(t)g is a cyclic shift offs��(t)g by Lemma 5. Whenc is a square,
similarly, fsc(t)g is a cyclic shift offs1(t)g andfs�c(t)g is a cyclic
shift of fs�1(t)g. Therefore, it is enough to considerfs�1(t)g and
fs��(t)g in order to discuss the optimal autocorrelation property of
fsc(t)g by Theorem 7.

Lemma 8: For any� 6� 0 (modN) such that1 � �� 2 Ci and
�� 2 Cj , we have

jI�� \ �� I��j = (i+ j + 1; i+ 1):
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TABLE I
BINARY SEQUENCES OFPERIODN = 12

TABLE II
BINARY SEQUENCES OFPERIODN = 26

Proof: For x 2 I�� \ ��I��, we can write downx = y � � for
y 2 C0 andx = �� (z � �) for z 2 C0. Thus, we have

1 +
��z

�(1� �� )
=

y

�(1� �� )
:

The lemma follows from the relation

��z

�(1� �� )
2 Ci+j+1 and

y

�(1� �� )
2 Ci+1

for 1� �� 2 Ci and�� 2 Cj .

Theorem 9: The sequencesfs��(t)g and fs1(t)g of period N
are balanced and have optimal autocorrelation. Specifically, for� 6�
0 (modN)

���(�) =
�4�; if N � 0 (mod4)

2� 4�; if N � 2 (mod4)

where� 2 f0; 1g.

Proof: It follows from (2), Theorem 7, and Lemmas 6 and 8.

Remark 10: In [6], Lempel, Cohn, and Eastman considered the
characteristic sequencefs(t)g of the set

S = f�2i+1 � 1 j i = 0; 1; . . . N=2� 1g:

Clearly,S = ��1(C0��) ands(t) = s��(t+1). Therefore, their se-
quence is a cyclic shift offs��(t)g, and our approach using cyclotomic
numbers gives another simple proof of the construction in [6].

Lemma 11: For any� 6� 0 (modN) such that1 � �� 2 Ci and
�� 2 Cj , we have

jI�1 \ �� I�1 j = (i+ j; i)� 1:

Proof: For x 2 I�1 \ �� I�1 , we can write downx = y � 1 for
y 2 C0nf1g andx = �� (z � 1) for z 2 C0nf1g. Thus, we have

1 +
��z

1� ��
=

y

1� ��
:

Note that the solution(y; z) = (1; 1) is not allowed. Therefore, the
lemma comes from the relation

��z

1� ��
2 Ci+j and

y

1� ��
2 Ci

for 1� �� 2 Ci and�� 2 Cj .

Theorem 12: The sequencesfs�1(t)g andfs�(t)g of periodN are
almost balanced and have optimal autocorrelation. Specifically, for� 6�
0 (modN)

��1(�) =
�4�; if N � 0 (mod 4)

2� 4�; if N � 2 (mod 4)

where� 2 f0; 1g.
Proof: The proof follows from (2), Theorem 7, and Lemmas 6

and 11.

Example 13: Let p= 13 andm= 1 so thatN = 12� 0 (mod 4):
It is easy to check that2 is a primitive rootmod 13. Then, we obtain
two inequivalent sequences as shown in Table I. Observe all four rela-
tions given in Theorem 7.

Example 14: Let p = 3 andm = 3 so thatN = 26 � 2 (mod 4).
Let � 2 F be primitive with�3 + 2� + 1 = 0. Then, we obtain two
inequivalent sequences as shown in Table II.

Example 15: Let p = 5 andm = 2 so thatN = 24 � 0 (mod 4).
Let � 2 F be primitive with�2 + � + 2 = 0. Then, we obtain two
inequivalent sequences as shown in Table III.

Theorem 16: For u andv shown in Table IV,fsc(t)g has the fol-
lowing distribution:

�c(�) =
0 (+2; resp.); for u values of�

�4 (�2; resp.); for v values of�

whenN � 0 (mod 4) (N � 2 (mod 4), resp.).
Proof: It can be shown easily by solving two simultaneous equa-

tions. WhenN � 0 (mod 4) andsc(t) is balanced, we have

N + 0u+ (�4)v =0

u+ v + 1 =N

which givesu = (3N�4)=4 andv = N=4. The other cases are proved
similarly.

Theorem 17: The sequencesfs1(t)g andfs�(t+ 1)g are in char-
acteristic phase. Furthermore, the cyclic shifts offs1(t)g andfs�(t+
1)g by every integer multiple ofT are in characteristic phase, where
T

�
= (pm � 1)=(p� 1).

Proof: The periodN=pm�1 and observe thatTp�T (modN):
Let k be an integer. Then

s1(t�kT )=1,�t�kT =z2 � 12I1 somez

,�tp�kTp=�tp�kT =z2p�12I1:
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TABLE III
BINARY SEQUENCES OFPERIODN = 24

TABLE IV
DISTRIBUTION OF AUTOCORRELATIONVALUES OFfs (t)g

For the sequencefs�(t+ 1)g, we have the following:

s�(t�kT+1)=1,�t�kT+1=z2 � �2I� somez

,�tp�kTp+p=z2p��p

,�tp�kT+1=��(p�1)(z2p��p)2I�:

IV. RESULT OFCOMPUTERSEARCH AND CONCLUDING REMARKS

In this section, we summarize the result of an extensive computer
search and discuss some miscellaneous cases. The computer search was
restricted to the case of balanced or almost balanced binary sequences
fsa; b(t)gwith optimal autocorrelation generated by(z+1)d+azd+b
as in Section II. Form = 1, we were able to search completely for
odd primes up to97. For odd primesp up to 19 and appropriatem
(manageable by Pentium PC), we have tried every possibled from 2 to
N �1 and alla 2 F � andb 2 F . Observe that it is enough to consider
coset representatives ford since

(z + 1)dp + apzdp + bp = (zp + 1)d + a0(zp)d + b0

andz 7! zp is a permutation ofF .
We present the result of our computer search in three tables. Tables V

and VI show the values ofd for which there exists some(a 6= 0; b)
such that a balanced (or an almost balanced or both) binary sequence
with optimal autocorrelation exists. No other values ofd in this range
produce (almost) balanced binary sequences with optimal autocorrela-
tion. We have omitted the result of the computer search with the value
a = 0 included due to the limited space simply because too many
values ofd have popped up. It turned out that inequivalent binary se-
quences with the same discrepancyD exists (includinga = 0) for
some short lengths. Table VII shows all the inequivalent classes of pe-
riod N = p � 1 for 5 � p � 97. For p = 19, we have found three
inequivalent classes withD = 2 (almost balanced). We conjecture that
no further multiple inequivalence classes exist forp > 97, but we shall
remain this as a future research topic.

Besides all the parameter sets of(a; b; d; p) so far discussed, one
more case of interest comes from the computer search. In this case, we
were currently able to show only the (almost) balance property of the
characteristic sequences:

Theorem 18: The characteristic sequence of periodN = pm�1 of
I(a; b) for d = (pm + 1)=2, a = (�1)d�1, andb = �1 is balanced
whenN � 0 (mod 4) and is almost balanced whenN � 2 (mod 4).
For a givenN , the sequence forb = 1 is a cyclic shift of that for
b = �1.

Proof: Note that forx 2 F � we havexN=2 = 1 whenx 2 C0

andxN=2 = �1 when x 2 C1. Therefore, the polynomialf(z)

TABLE V
THE VALUES OFd FOR WHICH THERE EXISTS SOME (a 6= 0; b) SUCH

THAT AN (ALMOST) BALANCED SEQUENCE OFPERIOD N = p � 1
WITH OPTIMAL AUTOCORRELATIONEXISTS

becomes

f(z) = (�z)N=2 + (z + 1)N=2 z + b+ (z + 1)N=2:

First,f(0) = b+1 andf(�1) = b� 1. For all other values ofz 2 F ,
we have the following expression, where the ordered pair(i; j) for
i; j 2 f0; 1g denotes the cyclotomic number given in Lemma 6:

f(z) =

1 + (�1)N=2 z + b+ 1; (0; 0) values ofz

�1 + (�1)N=2 z + b� 1; (0; 1) values ofz

1� (�1)N=2 z + b+ 1; (1; 0) values ofz

�1� (�1)N=2 z + b� 1; (1; 1) values ofz:

Therefore, we have the table of values off(z)=2 for all z in F at the
bottom of the following page. Consider the caseN � 0 (mod 4) and
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TABLE VI
THE VALUES OFd FOR WHICH THERE EXISTS SOME (a 6= 0; b) SUCH THAT AN (ALMOST) BALANCED SEQUENCE OFPERIODN = p � 1 (m � 2) WITH

OPTIMAL AUTOCORRELATIONEXISTS

TABLE VII
THE INEQUIVALANCE CLASSES OFBINARY SEQUENCES OFLENGTHp� 1 FOR5 � p � 97 WITH OPTIMAL AUTOCORRELATION AND THESAME DISCREPANCYD

N � 0 (mod 4) N � 2 (mod 4)

b = 1 b = �1 b = 1 b = �1 # of times

1 0 1 0 once atz = 0

0 �1 0 �1 once atz = �1

z + 1 z 1 0 (0; 0) times

0 �1 �z �(z + 1) (0; 1) times

1 0 z + 1 z (1; 0) times

�z �(z + 1) 0 �1 (1; 1) times
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b = 1. The index setI must be of the formI = A [B [ C where

A = f1g

B = fz + 1 j z 2 C0; z + 1 2 C0g

and

C = f�z j z 2 C1; z + 1 2 C1g:

Observe that these three sets are pairwise-disjoint. Therefore,

jIj = 1 + jBj + jCj = 1 + (N=4� 1) +N=4 = N=2:

The other cases can be treated similarly.
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A Class of Pseudonoise Sequences over GF with Low
Correlation Zone

Xiaohu H. Tang and Pingzhi Z. Fan, Senior Member, IEEE

Abstract—In this correspondence, a new class of pseudonoise sequences
over GF ( ), based on Gordon–Mills–Welch (GMW) sequences, is con-
structed. The sequences have the property that, in a specified zone, the
out-of-phase autocorrelation and cross-correlation values are all equal to
1. Such sequences with low correlation zone (LCZ) are suitable for ap-

proximately synchronized code-division multiple-access (CDMA) system.

Index Terms—ACF, CCF, Gordon–Mills–Welch (GMW) sequence, low
correlation zone (LCZ), zero correlation zone (ZCZ).

I. INTRODUCTION

The pseudonoise sequences with low out-of-phase autocorrelation
and cross-correlation values are required for direct-sequence (DS)
code-division multiple-access (CDMA) (DS-CDMA) system to
reduce the multiple-access interference (MAI).M -sequences, Gold
sequences, Kasami sequences, and Gordon–Mills–Welch (GMW)
sequences are well known for their good periodic correlation [1]. A
survey on the binary pseudonoise sequences was given in [2], and the
relatedp-ary sequences were introduced by [3], [4].

Recently, an approximately synchronized (AS) CDMA
(AS-CDMA) system was proposed by Suehiro [5], where the
synchronization among users can be controlled within permissible
time difference. AS-CDMA system without cochannel interference
can be realized by using the sequences with zero correlation zone
(ZCZ) [6], [7]. On the other hand, AS-CDMA system with low
cochannel interference can be realized by using the sequences with
low correlation zone (LCZ), as it is the case of [8]. The binary LCZ
sequences introduced in [8] is based on GMW sequences. The corre-
lation values of the sequences are almost all equal to�1 except for a
few values. In this correspondence, we have extended the sequences
from binary top-ary with the same correlation property. It is shown
that the binary sequence set in [8] is only a special case of our result.

In the following sections, we will first present the main result of
this correspondence, then give a proof of the main result, and finally
conclude by an illustrative construction example.
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