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necessary and sufficient conditions in (24) derived in the previous sec-
tions also hold when carrier phase delays are considered—that is, jRRRj
is maximized when

L

`=1

g`ig`j���`iXXX`���
>

`j +WWW ij =
Eij

N
IIIN ; 1 � i; j � B: (51)

And as before, it is possible that no such set of XXX` exists, in which
case, our results provide an upper/lower bound on sum capacity/TSC.

VI. CONCLUSION

The overall structure of collaborative but geographically dispersed
bases is interesting in light of the proliferation of consumer wireless
systems like 802.11 and the amount of dark fiber available from past
fiber (over)deployments. In this correspondence, we considered an ab-
straction of such systems as multiple collaborating base stations and
uniform channels between users and bases and derived bounds on sum
capacity and TSC via structural properties of the received covariance
matrix.We also showed that as compared to single-base systems, where
maximizing sum capacity and minimizing TSC are equivalent prob-
lems, in multibase systems TSC and sum capacity optimization can
lead to different results.
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Frequency Hopping Sequences With Optimal Partial
Autocorrelation Properties
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Abstract—We classify some -ary ( prime, integer) generalized
-sequences and generalized Gordon–Mills–Welch (GMW) sequences

of period 1 over a residue class ring = GF ( )[ ] ( )
having optimal partial Hamming autocorrelation properties. In frequency
hopping (FH) spread-spectrum systems, these sequences are useful for
synchronizing process. Suppose, for example, that a transmitting -ary
FH patterns of period 1 are correlated at a receiver. Usually, the
length of a correlation window, denoted by , is shorter than the pattern’s
overall period. In that case, the maximum value of the out-of-phase
Hamming autocorrelation is lower-bounded by but the classified
sequences achieve this bound with equality for any positive integer .

Index Terms—Finite rings, frequency hopping, generalized Gordon–
Mills–Welch (GGMW) sequences, Hamming correlation, partial autocor-
relation.

I. INTRODUCTION

In frequency hopping multiple-access (FHMA) spread-spectrum
systems employing orthogonal modulation, we have to use a set of
frequency hopping patterns to minimize the maximum of Hamming
out-of-phase autocorrelation and cross correlation to effectively
discriminate between their own signals and reduce multiple-access
interference (MAI). Specific methods to generate such sets originate
from the properties of m-sequences, Reed–Solomon codes, or com-
binatorial methods used in the ring of integers mod p for appropriate
prime p [1], [2]. For example, an optimal family of frequency hopping
(FH) sequences having pk (p is a prime and k is a positive integer)
symbols can be easily constructed from m-sequence over a Galois
field GF (p) [3] or from a generalized m-sequence (GM) or a gener-
alized Gordon–Mills–Welch (GGMW) sequence over a polynomial
residue class ring [4], [5]. Such sequences have optimal periodic
autocorrelation functions. However, usually the length of a correlation
window is shorter than the period of the chosen FH sequence due to
the limited synchronization time or hardware complexity. Moreover,
the window length may vary from time to time depending on the
channel conditions. In that case, the partial Hamming autocorrelation,
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rather than the full-period Hamming autocorrelation, will play a major
role in determining the synchronization performance.

The partial Hamming correlation function between two sequences
X = fx(j)g and Y = fy(j)g, for a period N and the correlation
window length L starting at t, is defined as follows:

HXY (� ; t j L) =

t+L�1

j=t

h[x(j); y(j + � )]; 0 � � < N (1)

where h[x; y] is a binary Hamming function determined as h[x; y] = 1
if x = y and h[x; y] = 0 if x 6= y. If t = 0 and L = N , (1) represents
the conventional periodic Hamming correlation function HXY (�) as
defined in [3]. Then the maximum of the partial Hamming autocorre-
lation function (HAF) along with window length L is defined as

H(X j L) = max
0<�<N; 0�t<N

fHXX(� ; t j L)g: (2)

In this correspondence, we classify GM and GGMW sequences
having optimal partial Hamming autocorrelation properties irrespec-
tive of the length of the correlation window. The optimality of the
partial Hamming autocorrelation property can be extended from the
optimal criteria as presented in [3].

Definition 1: Let S be the set of all sequences of length N over a
given alphabet A. We say that a sequence X(2 S) is strictly optimal
if H(X j L) � H(X0 j L) for all L � N and all X 0 2 S.

II. GENERALIZED MAXIMAL LENGTH AND GMW SEQUENCES

Let R be a polynomial residue class ring defined by R =
GF (p)[�]=(w(�)k), where w(�) is an irreducible polynomial of
degree m over GF (p), m � 1. From this point, we will consider
only the case where m = 1 or R = GF (p)[�]=(�k). In that case, any
element b 2 R can be expressed via the ideal basis representation

b = b0 + b1� + � � �+ bk�1�
k�1 (3)

where bi 2 GF (p). Thus, R can be written as

R = GF (p) + � GF (p) + � � �+ �k�1 GF (p): (4)

The Galois extension ring of R denoted as GR (R; r) is defined
as R[x]=(f(x)) where f(x) is a basic monic irreducible polynomial
of degree r over R. This f(x) can be selected from the monic irre-
ducible polynomials over GF (p) since GF (p) is a subring of R and
any irreducible polynomial defined over the subring GF (p) is obvi-
ously irreducible over R [5]. Similarly to (3) and (4), any element
�(2 GR (R; r)) and GR (R; r) can be expressed as

� =�0 + �1� + � � �+ �k�1�
k�1

GR (R; r) =GF (pr) + � GF (pr) + � � �+ �k�1 GF (pr)

where �i 2 GF; (pr).
For

� =

k�1

i=0

�i�
i 2 GR (R; r)

let the mapping �s: � 7! k�1
i=0 �i

p �i denote a Frobenius automor-
phism of GR (R; r). If sjr, the trace function Trrs(�) from GR (R; r)
into its subring GR (R; s) is calculated as

Trrs(�) =

(r=s)�1

i=0

�si(�)

=

(r=s)�1

i=0

k�1

j=0

�pj �j =

k�1

j=0

trrs(�j)�
j (5)

where

trrs(�) =

(r=s)�1

i=0

�p

is the field trace function from GF (pr) to GF (ps). The trace function
defined in (5) has the following properties:

1) Trrs(�) = Trrs(�
si(�)); 8i and 8� 2 GR (R; r);

2) Trrs(b� + c) = bTrrs(�) + cTrrs(); 8 b; c 2 GR (R; s) and
8�;  2 GR (R; r);

3) for any fixed b 2 GR (R; s), the equation Trrs(�) = b has
exactly pk(r�s) solutions.

When � is a root of a primitive basic irreducible polynomial f(x)
over R = GF(p)[�]=(�k) and the Galois extension ring is defined as
GR (R; r) = R[x]=(f(x)), every GM sequence S� = fs�(i)g overR
has the following unique trace representation [5]:

s�(i) = Trr1(��
i); � 2 GR (R; r):

For a = k�1
i=0 ai�

i 2 GR (R; s), let us define a permutation mono-
mial

	d : a 7!

k�1

i=0

adi �
i:

Then, every GGMW sequence [5], extended from a GMW sequence
over a finite field [6], [7], can be represented as

s�(i) = Trs1(	
d[Trrs(��

i)]); � 2 GR (R; r)

where sjr and gcd(d; ps � 1) = 1.

III. GM AND GGMW SEQUENCES WITH OPTIMAL PARTIAL
AUTOCORRELATION PROPERTY

For a frequency hopping sequence X of period N and a given cor-
relation window of length L (� N), we derive a lower bound on the
maximum out-of-phase autocorrelation valueH(X jL), defined in (2).
We use the special case H(X) = H(X j N). We start from the min-
imum bound on H(X) presented in [3].

Lemma 1: For every sequence X = fx(j)g of length N over an
alphabet A of size jAj = m

H(X) � H(X) �
(N � b)(N + b�m)

m(N � 1)
(6)

where b is the least nonnegative residue ofN modulom andH(X) is
the average out-of-phase value of HXX(�).

Using the preceding lemma, we can derive the following lower
bound on the partial HAF maxium.

Corollary 1:

H(X jL ) �
L

N

(N � b)(N + b�m)

m(N � 1)
: (7)

Proof: Let us derive the average out-of-phase value of
HXX(� ; t j L) as defined in (1)

H(X j L) =
N�1
�=1

N�1
t=0 HXX(� ; t j L)

(N � 1)N

=
N�1
�=1 LHXX(� ; 0 j N)

(N � 1)N

=
L

N

N�1
�=1 HXX(�)

(N � 1)

=
L

N
H(X):

ThenH(X jL ) � H(X j L) and (6) yields the result.
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Now, we classify some strictly optimal GM or GGMW sequences
which achieve the lower bound given in (7). First, let us choose a de-
gree 2k primitive irreducible polynomial f(x) over GF (p) as a prim-
itive basic irreducible polynomial over R = GF (p)[�]=(�k). Assume
f(�) = 0 and

� = �e + �e � + � � �+ �e �k�1 2 GR (R; 2k):

Then

s�(i) = Trk1 	d[Tr2kk (��i)]

will be a pk-ary sequence, of period p2k�1, if all the �e ’s are linearly
independent over GF (p) and gcd(d; pk � 1) = 1. In that case, the
maximum out-of-phase value calculated for a givenL is bounded using
(7), as

H(S� jL ) �
L

pk + 1
: (8)

Subsequently, the following theorem can be used to classify the strictly
optimal GGMW sequences satisfying the equality in (8) for any posi-
tive integer L. Here L is at most p2k � 1, the period of S� .

Theorem 1: Let f(x) be a degree 2k primitive polynomial over
GF (p), f(�) = 0, and gcd(d; pk � 1) = 1. A GGMW sequence
fs�(i)g

s�(i) = Trk1 	d[Tr2kk (��i)] ;

� = �e + �e � + �e �2 + � � �+ �e �k�1

is strictly optimal if and only if �e d; �e d; �e d; . . . ; �e d are lin-
early independent over GF (p) and ei � ej (mod pk + 1) for all
i; j; 0 � i; j � k � 1.

Proof: Since �(e �e )d 2 GF (pk) for all j if ej � e0
(mod pk+1)

s�(i)� s�(i+ � ) =

k�1

j=0

trk1 �(e �e )d (tr2kk (�i+e ))d

�(tr2kk (�i+�+e ))d �j (9)

for a GGMWsequenceS� and a fixed nonzero � . Then (9) will be equal
to zero exactly when all �j ’s coefficients are zero, or equivalently

trk1 �(e �e )d (tr2kk (�i+e ))d � (tr2kk (�i+�+e ))d = 0 (10)

for all j; 0 � j � k � 1. Since all the �(e �e )d’s are linearly in-
dependent over GF (p) they form a basis for GF (pk). Therefore, (10)
occurs only if

(tr2kk (�i+e ))d � (tr2kk (�i+�+e ))d = 0 (11)

as proven in [8]. However, since the given monomial is a simple per-
mutation, the number of solutions for 0 � i � p2k � 2 in (11) is the
same for any value of d, namely, d = 1. Therefore,

HS S (� ; t j L)

= f ijs�(i)� s�(i+ � ) = 0; t � i � t+ L� 1g

= f ijtr2kk �i+e (1� �� ) = 0; t � i � t+ L� 1g : (12)

To evaluate (12) with a window length L and a nonzero � given, we
need the following lemma as explained in [1].

Lemma 2: Let m-sequence b(i) over GF (ps), p prime, be defined
as

b(i) = trrss (�i)

where � is a primitive element of GF (prs), and let T = (prs �
1)=(ps� 1). Then every segment of T consecutive symbols from b(i)
contains exactly (p(r�1)s � 1)=(ps � 1) zeros.

Applying Lemma 2, we observe that anm-sequence represented by
tr2kk (�i) produces only one zero symbol in every segment of pk + 1
consecutive indices i. Since tr2kk (�i+e (1 � �� )) is a cyclic-shifted
version of tr2kk (�i) when � 6= 0, (12) becomes

HS S (� ; t j L) =

L

p +1
; if (pk + 1)jL

L

p +1
or L

p +1
� 1; otherwise.

This proves that

H(S� jL ) = dL=(pk + 1)e: (13)

Conversely, assume that S� is strictly optimal. For L = 1 and an
arbitrary but fixed � , it is obvious that t� exists such that

HS S (� ; t� j 1) = 1

where s�(t�)� s�(t� + � ) = 0. Since S� satisfies the bound (13) for
any L, it yields

HS S (� ; t� jL) = w

for (w � 1)(pk + 1) < L � w(pk + 1). This produces

s�(t� + i)� s�(t� + i+ � )

=
0; if i � 0 (mod pk + 1) (14a)
nonzero; otherwise: (14b)

Since (14a) indicates that

s�(t� + j(pk + 1))� s�(t� + j(pk + 1) + � ) = 0

for all j; 0 � j < pk � 1, each �l’s coefficient of the equation must
be zero as

trk1 �j(p +1)d (tr2kk (�t +e ))d�(tr2kk (�t +e +� ))d = 0: (15)

As j varies from 0 to pk�2,�j(p +1)d passes through all the elements
in GF (pk). This indicates that the difference of two inner traces in (15)
will be zero for the same reason as was applied to (10) to produce (11).
Because of the permutation property of the given monomial, applying
d = 1 to this equation will not change the solutions of el with t� and
� fixed. This yields the following equation involving el:

tr2kk �t +e (1� �� ) = 0: (16)

Since anm-sequence tr2kk (�e) produces only one zero symbol in every
segment of pk+1 consecutive indices e, we have ei�ej(modpk+1)
for all i; j; 0� i; j� k�1 in (16).
Next, to show that �e d; �e d; �e d; . . . ; �e d are linearly inde-

pendent, we assume the contrary. Then there exist c0; c1; . . . ; ck�1
which are not all-zero in GF (p) satisfying

k�1

l=0

cl�
e d = 0:

Assuming that cl 6= 0 and  2 GF (pk), the following equation is
obviously true:

trk1(�
(e �e )d) = �

k�1

j=0;j 6=l

cj
cl

trk1(�
(e �e )d): (17)
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TABLE I
THREE 27-ARY GM SEQUENCES HAVING A PERIOD OF 36 � 1

Fig. 1. H(S� jL) of three GM sequences represented by (e0; e1; e2).

Applying (17) to (9), the trace term of �l’s coordinate can be described
by a linear combination of the remaining trace terms. Since (9) is, in this
case, related to the binary Hamming function of a GGMW sequence
derived over GR (R0; r) where R0 = GF (p)[�]=�k�1, zero occurs in
(9) at least pk+1 � 1 times during one period. This demonstrates that
S� is not optimal even in the case of full-period autocorrelation, which
is a contradiction.

For GM sequences, we can obtain a similar result.

Corollary 2: Let f(x) be a degree 2k primitive polynomial over
GF (p) and f(�) = 0. A GM sequence fs�(i)g,

s�(i) = Tr2k1 (��i); � = �e + �e � + �e �2 + � � �+ �e �k�1

is strictly optimal if and only if �e ; �e ; �e ; . . . ; �e are linearly
independent over GF (p) and ei � ej(modpk + 1) for all i; j; 0 �
i; j � k � 1.

Proof: Applying d = 1 in Theorem 1 yields this corollary.

Example 1: In Table I, we represent three GM sequences overR =
GF (3)[�]=�3 where

s�(i) = Tr61(��
i); � = �e + �e � + �e �2 2 GR(R; 6)

and � is a root of a primitive polynomial x6 + x + 2 over GF (3).
Although both sequences (e0; e1; e2) = (0; 1; 2) and (e0; e1; e2) =
(0; 17; 100) have the optimal periodic Hamming autocorrelation prop-
erties they are not strictly optimal as shown in Fig. 1. However, any

sequence satisfying Theorem 1 must be strictly optimal, for example,
(e0; e1; e2) = (0; 28; 56) where any ea � eb for a 6= b is divisible by
28 = 33 + 1, and 1; �28; �2�28 are linearly independent over GF (3).

IV. CONCLUDING REMARKS

Optimal families of FH sequences can be constructed from these
classified GM and GGMW sequences by using the same method as
presented in [5]. Then all the sequences in such a family have the
same optimal partial Hamming autocorrelation properties. In this cor-
respondence, we have only considered the case in which w(�) = � for
R = GF (p)[�]=(w(�)k). Therefore, further study should focus on a
more general case when the degree of w(�) is greater than one.
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Compression Mappings on Primitive Sequences
Over

Xuan Yong Zhu and Wen Feng Qi

Abstract—Let ( ) be the integer residue ringwith odd prime 5
and intetger 2. For a sequence over ( ), there is a unique
-adic expansion = + + + , where each is a
sequence over 0 1 . . . 1 , and can be regarded as a sequence over
the finite field GF ( ) naturally. Let ( ) be a primitive polynomial over

( ), and ( ( ) ) the set of all primitive sequences generated
by ( ) over ( ). Set

1( 0 . . . 1) = 1
+ 2 1( 0 1 . . . 2)

1( 0 . . . 1) = 1
+ 2 2( 0 1 . . . 2)

where and are arbitrary functions of 1 variables over
GF ( ) and 2 1. Then the compression mapping

1 :
( ( ) ) GF ( )

1( 0
. . .

1
)

is injective, that is, = if and only if

1( 0
. . .

1
) = 1( 0

. . .
1
)

for ( ( ) ). Furthermore, if ( ) is a strongly primitive
polynomial over ( ), then

1( 0
. . .

1
) = 1( 0

. . .
1
)

if and only if

= and 1( 0 . . . 1) = 1( 0 . . . 1)

for ( ( ) ).

Index Terms—Compressing mapping, integer residue ring, linear recur-
ring sequence, primitive sequence.

I. INTRODUCTION

Suppose p is a prime and Re = Z=(pe) is the integer residue ring
modulo pe, which can be also represented as f0; 1; . . . ; pe � 1g. In
this correspondence, given positive integerm � 2, we always consider
a(modm) as an element in f0; 1; . . . ;m � 1g.

Manuscript received June 9, 2003; revisedMay 13, 2004. This work was sup-
ported by the Foundation for the Author of National Excellent Doctoral Disser-
tation of P. R. China under Grant 200060 and by the National Natural Science
Foundation of China under Grant 60373092.

The authors are with Department of Applied Mathematics, Zhengzhou
Information Engineering University, Zhengzhou, 450002, China (e-mail:
xuanyong.zhu@263.net; wenfeng.qi@263.net).

Communicated by K. G. Paterson, Associate Editor for Sequences.
Digital Object Identifier 10.1109/TIT.2004.834791

Let f(x) = xn+ cn�1x
n�1+ � � �+ c0 be a monic polynomial with

degree n � 1 over Re. A sequence a = (a(t))t�0 over Re satisfying
the recursion

a(i+n)=�[c0a(i)+c1a(i+1)+� � �+ cn�1a(i+ n�1)](mod pe)

for i = 0; 1; 2; . . ., is called a linear recurring sequence of degree n
over Re, generated by f(x). G(f(x); pe) denotes the set of all se-
quences over Re generated by f(x). Reference [8] is a good introduc-
tion on linear recurring sequences over Re.
Let a = (a(t))t�0 and b = (b(t))t�0 be sequences over Re and

c 2 Re. Define a + b = (a(t) + b(t))t�0, ca = (c � a(t))t�0,
a � b = (a(t) � b(t))t�0, and the shift operator of sequence xka =
(a(t+ k))t�0 for k = 0; 1; 2; . . .. So we have

G(f(x); pe) = fa 2 R1e j f(x)a = 0g:

Especially, we set

G0(f(x); pe) = fa 2 G(f(x); pe) j a 6� 0(mod p)g:

If f(0) 6� 0(modp), then there always exists a positive integer P
such that f(x) divides xP � 1 over Z=(pe). The least such P is called
the period of f(x) over Z=(pe) and denoted by per (f(x); pe), which
is upper-bounded by pe�1(pn � 1), where n = deg f(x).

Definition 1: Let f(x) be a monic polynomial of degree n over
Z=(pe), then f(x) is called a primitive polynomial if per(f(x); pe) =
pe�1(pn � 1) (see [3], [7], and [19]).

Let f(x) be a primitive polynomial of degree n over Z=(pe), then
f(x)(modpi) is also a primitive polynomial over Z=(pi), whose pe-
riod is

per(f(x); pi) = pi�1(pn � 1); i = 1; 2; . . . ; e� 1:

In particular, f(x)(modp) is a primitive polynomial over the prime
field GF (p), see [11]. Thus, we have

xp T � 1 + pihi(x)(modf(x)) (1)

for i = 1; 2; . . . ; e � 1, where T = pn � 1 and hi(x) is a polyno-
mial over Z=(pe) of degree less than n satisfying hi(x) 6� 0(modp).
Clearly, hi(x) is coprime with f(x)(modp) overZ=(p). Furthermore,
we have [1], [7]

1) if p = 2, then h2(x) = � � � = he�1(x) 6� 0(mod2) and
h2(x) = h1(x) + h1(x)

2(modf(x));

2) if p � 3, then h1(x) = h2(x) = � � � = he�1(x) 6� 0(modp).

For the primitive polynomial f(x) over Z=(pe), we always set

h(x) = h1(x)(modp) (2)

where h1(x) is defined by (1). We call f(x) a strongly primitive poly-
nomial over Z=(pe), if deg h(x) � 1 for the case of p � 3 or p = e =
2, and deg h2(x) � 1 for the case of p = 2 and e � 3. Obviously, we
have deg f(x) � 2 for the strongly primitive polynomial f(x) over
Z=(pe) with e � 2 (see [15]).
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