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Generalization of Tanner’s
Minimum Distance Bounds for LDPC Codes

Min-Ho Shin, Joon-Sung Kim and Hong-Yeop Song

Abstract— Tanner derived minimum distance bounds of reg-
ular codes in terms of the eigenvalues of the adjacency matrix
by using some graphical analysis on the associated graph of the
code. In this letter, we generalize Tanner’s results by deriving a
bit-oriented bound and a parity-oriented bound on the minimum
distances of both regular and block-wise irregular LDPC codes.

Index Terms— LDPC codes, bit-oriented bound, parity-
oriented bound, QC-LDPC codes.

I. INTRODUCTION

LOW-DENSITY parity check (LDPC) codes are error-
correcting codes defined by sparse parity check matrices.

LDPC codes with iterative decoding were first invented by
Gallager in 1962 and recently much attention has been paid
since they have been rediscovered to perform very close to
the theoretical limit [1],[2],[3],[4]. Especially Luby et al. [3]
introduced irregular LDPC codes with improved performances
and Richardson et al. [4] presented near capacity achiev-
ing irregular LDPC codes by introducing density evolution
technique which analyzes the asymptotic performance of the
codes. However, relatively few papers have been presented on
the distance property of the LDPC codes. Tanner [5] derived
minimum distance bounds on the regular LDPC codes in
terms of the eigenvalues of the associated graph by using
the relationship between nodes on the graph and a minimum-
weight codeword.

In this letter we generalize the Tanner’s results. We derive
a bit-oriented bound and a parity-oriented bound on the
minimum distance of both regular and block-wise irregular
LDPC codes. We present some examples of codes and discuss
the usefulness of the bounds.

II. TANNER’S MINIMUM DISTANCE BOUNDS

An LDPC code with an m × n parity check matrix H can
be thought as a bipartite graph with m check nodes and n
bit nodes [5]. A bipartite graph is B = (Vb ∪ Vc, E), where
Vb = {b1, b2, . . . , bn}, Vc = {c1, c2, . . . , cm} and the edge set
E consists of edge (ci, bj) in Vc ×Vp corresponds to nonzero
hij in H [6]. The connectivity of the graph is described by an
(m + n) × (m + n) real-valued adjacency matrix with entry
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aij = 1 if and only if the ith node is connected by an edge
to the jth node [6]. Thus

A =
[

0 H
HT 0

]
.

Tanner [5] derived minimum distance bounds by analyzing
the properties of the subgraph of B related to a minimum-
weight word. He defined active bit nodes as bit nodes cor-
responding to non-zeros in a minimum-weight word, active
edges as the edges incident on active bit nodes, and active
check nodes as the check nodes with at least one active
incident edge. See Fig. 1 for an example.

Tanner presented the following bounds on the minimum
distance d of a code with an m × n regular parity check
matrix H . Let γ be the fixed column weight and ρ be the
fixed row weight of H and µ1, µ2 be the largest and the second
largest eigenvalues of HHT respectively. Then we have the
bit-oriented bound [5, Theorem 3.1]

d ≥ n(2γ − µ2)
µ1 − µ2

,

and the parity-oriented bound [5, Theorem 4.1]

d ≥ 2n(2γ + ρ − 2 − µ2)
ρ(µ1 − µ2)

.

Using these bounds, Tanner set up a heuristic rule that a
code with a smaller ratio of second to first eigenvalues will
have a good distance property [5].

III. GENERALIZATION OF THE BOUNDS

Tanner’s bounds are applicable only to regular LDPC codes.
In this section we generalize Tanner’s results.

Theorem 1 (Bit-oriented bound): Let µ1 > µ2 > · · · > µs

be the ordered distinct eigenvalues of real valued matrix
HT H , where the parity check matrix H of a linear block code
is in the form of H = [H1,H2, . . .,Hp]. We assume that the
associated graph of the code is connected. Let each Hi, (1 ≤
i ≤ p) be an m × l matrix with fixed column weight γi and
fixed row weight ρi with the assumption γ1 ≤ γ2 ≤ · · · ≤ γp.

Then the minimum distance d of the code satisfies

d ≥ (2γ1 − µ2)l
∑p

i=1 γ2
i

γ2
p(

∑p
i=1 γiρi − µ2)

.

Proof: Let c be a real-valued vector of length-
pl corresponding to a minimum-weight codeword with
ones in every nonzero positions and zeros elsewhere.
The first eigenvector of HT H can be taken to be
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Fig. 1. This figure shows an example of regular LDPC code with length 9, fixed column weight 2, and fixed row weight 3. Active bit nodes and active
check nodes are shown corresponding to a minimum-weight word (110101000). (a) Parity check matrix. (b) Associated bipartite graph.

e1 = (γ1, . . . , γ1, γ2, . . . , γ2, . . . , γp, . . . , γp)T /
√

l
∑p

i=1 γ2
i

with the corresponding eigenvalue µ1 =
∑p

i=1 γiρi, and it is
unique since the graph is connected [7]. Let di be the number
of nonzeros of c in each l-portion corresponding to Hi, and
let ci be the projection of c onto the ith eigenspace. Clearly

cT c = ‖c‖2 = d, (1)

‖c1‖2 =
(
∑p

i=1 diγi)2

l
∑p

i=1 γ2
i

≤ d2γ2
p

l
∑p

i=1 γ2
i

. (2)

Let xi be the weight on the ith check defined by Hc. Since
each nonzero xi must be even and at least two, we have

‖Hc‖2 =
m∑

i=1

x2
i ≥ 2

m∑
i=1

xi = 2
p∑

i=1

diγi ≥ 2γ1d. (3)

Using the eigenspace representation we get

‖Hc‖2 =
s∑

i=1

µi‖ci‖2 ≤ (µ1 − µ2)‖c1‖2 + µ2‖c‖2. (4)

Then substituting (1), (2), (3) into (4) gives the desired bound
for d.

Theorem 2 (Parity-oriented bound): Let µ1 > µ2 > · · · >
µs be the ordered distinct eigenvalues of real valued matrix
HHT , where the parity check matrix H of a linear block code
is in the form of H = [H1,H2, . . .,Hp]. We assume that the
associated graph of the code is connected. Let each Hi, (1 ≤
i ≤ p) be an m × l matrix with fixed column weight γi and
fixed row weight ρi with the assumption γ1 ≤ γ2 ≤ · · · ≤ γp.

Then the minimum distance d of the code satisfies

d ≥ 2m(2γ1 +
∑p

i=1 ρi − 2 − µ2)
γp(

∑p
i=1 γiρi − µ2)

.

Proof: Let p be a length-m real-valued vector that has a
1 in every active check node position and 0 elsewhere, and let
pi be the projection of p onto the ith eigenspace of HHT . The
first eigenvector can be taken to be e1 = (1, 1, . . . , 1)T /

√
m

with µ1 =
∑p

i=1 γiρi, and it is unique since the graph is
connected [7]. If η is the number of 1’s in p, then pT p =
‖p‖2 = η and ‖p1‖2 = η2/m. Observe that HT p assigns an

integer weight distribution to bit nodes in H . Let yi be the
weight on the ith bit node so that

‖HT p‖2 =
pl∑

i=1

y2
i . (5)

Each active check node is adjacent to an even number of
nonzero bit nodes. For the jth active check node, let uj(w)
be the number of adjacent nodes with weight w in HT p,
0 ≤ w ≤ γp. The squared weight counted at the jth active
check node is

γp∑
w=1

(1/w)uj(w)w2 ≥ 2γ1 +
p∑

i=1

ρi − 2. (6)

Then since there are η active check nodes,

pl∑
i=1

y2
i ≥ η(2γ1 +

p∑
i=1

ρi − 2). (7)

Using eigenspace representation we get

‖HT p‖2 =
s∑

i=1

µi‖pi‖2 ≤ (µ1 − µ2)‖p1‖2 + µ2‖p‖2. (8)

Substituting from above gives

η ≥ m(2γ1 +
p∑

i=1

ρi − 2 − µ2)/(µ1 − µ2) (9)

and dγp ≥ 2η gives the desired bound.

Corollary 3: Tanner’s bounds are obtained by setting p = 1
or by setting γ1 = γ2 = · · · = γp and ρ1 = ρ2 = · · · = ρp in
Theorems 1 and 2.

IV. EXAMPLES AND CONCLUSIONS

To illustrate the use of the theorems, we calculate the
bounds of the code in Fig. 1 and present examples of quasi-
cyclic LDPC (QC-LDPC) codes. The parity check matrix of a
quasi-cyclic code is in the form of a block matrix consists of
m × m circulant matrices as blocks, where m is the order of
circulant matrix. Each circulant matrix Hij in H is completely
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rate1/2 QC-LDPC[length=38, max µ 2/µ 1]
rate1/2 QC-LDPC[length=38, min µ 2/µ 1]

rate1/2 Random[regular, length=38, γ  = 3, ρ = 6]
rate2/3 QC-LDPC[length=192, max µ 2/µ 1]
rate2/3 QC-LDPC[length=192, min µ 2/µ 1]

rate2/3 Random[length=192, same structure]

Fig. 2. BER performance of QC-LDPC codes compared with that of
randomly constructed ones with the same structure [2] in AWGN channel.
Sum-Product decoding algorithm with at most 100 iterations is applied.

described by the associated polynomial hij(x) corresponding
to the top row of Hij [8],[9],[10]. More precisely, we have

hij(x) =
m−1∑
k=0

(Hij)0kxk. (10)

We call the number of nonzero coefficients of the polynomial
the weight of the polynomial.

Example 1: The code in Fig. 1 is a rate-4/9 [9,2,3]-regular
LDPC code with µ1 = 6 and µ2 = 3. Note that non-zero
eigenvalues of HT H and HHT are the same [5],[6]. Hence
the bit-oriented bound gives d ≥ 3 and the parity-oriented
bound gives d ≥ 4. The actual minimum distance found
through an exhaustive search is 4. Thus the parity-oriented
bound gives the true minimum distance.

Example 2: Let H = [H1,H2] with h1(x) = 1 + x +
x8, h2(x) = 1 + x2 + x6 + x16, and m = 19. Then µ1 = 25
and µ2 = 6. In this example the bound from Theorem 1
becomes zero since µ2 = 2γ1, whereas the bound from
Theorem 2 gives d ≥ 2.5. The actual minimum distance found
through an exhaustive search is 7. One of the worst connected
graphs with these code parameters is H = [H1,H2] with
h1(x) = 1 + x5 + x12, h2(x) = 1 + x2 + x7 + x14. This
code has µ1 = 25 and µ2 = 22.29 with the true minimum
distance 4.

Example 3: Consider QC-LDPC codes with H =
[H1,H2,H3] with m = 64. Let the weights of the associated
polynomials are 3, 3, and 4 respectively. Then the largest
eigenvalue is µ1 = 34. With this structure one of the best
codes with girth 6 in terms of the theorems is h1(x) =
1 + x5 + x56, h2(x) = 1 + x16 + x47 and h3(x) = 1 +
x2 + x30 + x57. The second largest eigenvalue of this code
is µ2 = 13.67. Whereas one of the worst codes without 4-

cycle is h1(x) = 1 + x + x18, h2(x) = 1 + x12 + x36 and
h3(x) = 1 + x5 + x11 + x34 with µ2 = 28.19.

The derived bounds have weak points due to some approx-
imations used in the derivation. First if there are parity check

equations in the minimum-weight word satisfied by four or
more nonzero bits in the code, the inequality (3) will not
be tight. Second, replacing all the smaller eigenvalues by µ2

results in the loss of tightness. Third, replacing all the other
weights into the maximum(or minimum) weight in (2), (3),
(6) does the same. We observe that the bit-oriented bound
becomes trivial as p increases both in regular and irregular
cases, whereas the parity-oriented bound becomes meaningful
for larger column and row weights.

The bounds, though might not be tight sometimes, still give
a heuristic indicator for the distance property of an associated
code. For an example, the weight enumerator of the first code
in Example 2 is A(z) = 1 + 38z7 + 190z8 + 4636z11 + · · · ,
while A(z) = 1 + 19z4 + 38z6 + 95z7 + 266z8 + · · · for
the second one. Empirical results indicate the bounds give
a heuristic rule that a code with a smaller ratio of second
to first eigenvalue would have a good distance property as
expected by Tanner in his analysis on the case of regular LDPC
codes. This rule is also in accord with other criteria related
to expander graphs [11]. Simulation results (Fig. 2) show that
the derived bounds work well as a design criterion for the
construction of irregular LDPC codes.
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