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Concatenated LDGM Codes with Single Decoder
Joon-Sung Kim and Hong-Yeop Song, Member, IEEE

Abstract— We propose a design criterion for serially concate-
nated LDGM codes which require a single decoder and a bit-
interleaver. The inner LDGM code can be obtained by expanding
the rows of the parity check matrix of the outer LDGM code.
The resulting codes can be decoded using only the inner LDGM
decoder with slight modification. Simulation results show that the
performance of the proposed codes is almost the same as that
of serially concatenated LDGM codes’s using both the inner and
the outer decoders.

Index Terms— Low-density generator matrix codes, concate-
nated schemes, belief-propagation algorithm.

I. INTRODUCTION

AN LDPC code is a linear code with a parity-check
matrix that contains a small number of ones. By using

probabilistic iterative decoding algorithms, the performance of
LDPC codes is known to approach the Shannon limit[1][2].
The main advantage of LDPC codes over turbo codes is a
fully parallelizable decoder which allows fast decoding. On the
other hand, the encoding complexity is much larger than that
of Turbo codes since the encoding an LDPC code is usually
based on the matrix multiplication of large size. Therefore, it is
essential to search for (a family of) LDPC codes with efficient
encoding algorithms as well as efficient decoding algorithms.

In this paper, we consider LDGM codes which can be
regarded as a special type of LDPC codes[3]. Due to the
sparseness of its generator matrix and the fact that the parity
check matrix to/from generator matrix conversion is straight-
forward, the encoder complexity of LDGM codes is much
less than that of LDPC codes. Furthermore, since the parity-
check matrix is also sparse, LDGM codes can be decoded
using the same techniques as those for LDPC codes. In spite
of these advantages, the performance of LDGM codes is
known to be asymptotically bad since they have too many
degree-1 columns. Recently, Garcia-Frias and Zhong proposed
a concatenated scheme of LDGM codes[4]. In this scheme,
the output of the inner LDGM decoder can be regarded as
a priori probability to initialize the bit nodes of the outer
LDGM decoder. Concatenated LDGM codes proposed by
them were shown to achieve near Shannon limit performance.
We, however, would like to point out that the decoder hardware
complexity becomes significantly higher than that of a single
(non-concatenated, with comparable code-length) LDPC code
since their code requires both inner and outer decoders.
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Fig. 1. Bipartite graph representation of a LDGM code.

In this paper, we first review Garcia-Frias’s concatenated
schemes. We then propose a design criterion of the inner
and the outer LDGM codes for concatenation. The resulting
code can be decoded using only the inner LDGM decoder
with slight modification. This gives a much reduced decoder
hardware complexity but still maintaining the performance, as
confirmed by computer simulation at the end.

II. A CONCATENATED SCHEME OF LDGM CODES

LDGM codes are linear codes with generator matrix, G =
[I P ] , where I is a k × k identity matrix and P is a
k × (n − k) sparse matrix[4]. Here, k denotes the number
of information bits and n the number of bits of a codeword.
The parity check matrix of the codes is H = [PT I].
Figure 1 shows the bipartite graph representation of LDGM
codes. There exist (n − k) coded bit nodes of degree-1 and
k bit nodes corresponding to the systematic bits. Since the
messages propagated from the degree-1 coded bit nodes to
their corresponding check nodes are always the same, LDGM
codes have high error floors. But as mentioned in [4], the
number of errors for the codewords in error decays very fast,
and the outputs obtained from the decoding of LDGM codes
can be seen as a priori probability produced by an equivalent
channel introducing a small amount of erasures at specific
locations. So if we use these outputs to initialize the bit nodes
of the outer LDGM decoder in the decoding process, the
number of residual errors can be reduced. Simulation results
presented in [4, Fig. 3] show the good performance of these
concatenated LDGM codes.

III. PROPOSED DESIGN CRITERION

Concatenated LDGM codes achieve a performance com-
parable to that of irregular LDPC and Turbo codes. But its
decoder hardware complexity is higher than that of LDPC
codes since it requires both inner and outer decoders. To
reduce the decoder hardware complexity, we will design an
inner LDGM code by expanding the outer LDGM code so that
the inner LDGM decoder (with possibly a little modification)
can also be used to decode the outer LDGM code.
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Fig. 2. An (18, 9, 4) inner LDGM code obtained by expanding the rows of
the parity check matrix of a (9, 3, 2) outer LDGM code.

Let an (n, n − k, p) LDGM code be an LDGM code of
code length n, the number of check nodes n − k and all the
information bit nodes of degree p. In this paper, we will use
an (n1, n1 −k, p) outer LDGM code and an (n2, n2 −n1, rp)
inner LDGM code, where k is the number of information
bits, and r and s = (n2 − n1)/(n1 − k) must be natural
numbers. Note that the fact that s must be a natural number
imposes a constraint in the choice of inner and outer codes.
First, we generate the parity check matrix of the outer LDGM
code in a pseudorandom way. Then the parity check matrix of
the inner LDGM code can be derived from the outer LDGM
code by expanding each row of the parity check matrix of
the outer LDGM code into s rows such that the OR operation
of the expanded rows must be the same as the row of the
outer LDGM code. This enables us to make the parity check
matrices of both codes to have essentially the same decoder
structure. These expanded rows are to be used to construct
the parity check matrix of the inner LDGM code, where the
number of the edges of each bit node is increased r times. For
example, in Fig. 2, we consider a (9, 3, 2) outer LDGM code
and an (18, 9, 4) inner LDGM code where k = 6, n1 = 9 and
n2 = 18, so that r = 2 and s = 3 are natural numbers. Here,
the inner code can be obtained by expanding each row of the
parity check matrix of the outer code into 3 rows, where the
number of the edges of each bit node is increased twice. In
this expansion process, we can use a progressive edge growth
algorithm to maximize the performance[5]. The residual part
of the information bit nodes of the inner LDGM code can
be generated in a pseudorandom way. Figure 3(a) shows the
bipartite graph representation of the expansion of the first row
of the outer LDGM code shown in Fig. 2. In decoding process,
if all the messages from the expanded check nodes of the inner
decoder are merged into another new check node, as shown in
Fig. 3(b), the result will be the same as the check node of the
outer decoder. By designing the inner code that is derived with
afore-mentioned properties from the given outer code, we can
use the inner decoder in the decoding of the outer code with
a slightly modified belief-propagation algorithm.

The concatenated LDGM codes as presented has no com-
putational savings but has achieved the goal of reducing
the decoder hardware complexity. The decoded performance,
however, turns out to be worse. In fact, the performance of the
proposed concatenated codes turned out to be worse than that

(a) Expansion of a check node (b) Merge of the expanded check
nodes

Fig. 3. Bipartite graph representation of the first row shown in Fig. 2.

of serially concatenated LDGM codes reviewed in Section II.
The reason seems to be that for some information bit i, all of
the bits that participated in bit i for the inner code are also
participated in bit i for the outer code. Therefore, the proba-
bility that the erroneous bits in the inner decoder output are
still in error at the outer decoder output is high. Fortunately,
this degradation can be overcome by the introduction of a
bit-interleaver between the inner and the outer code.

Therefore the decoding procedure of the proposed code is as
follows: The received channel outputs are fed into the inner
decoder. Then the inner decoded outputs are de-interleaved,
and fed into the slightly modified inner decoder in order to
decode the outer code. Finally the decoded outputs are hard-
decisioned.

IV. MODIFIED BELIEF-PROPAGATION ALGORITHM FOR

PROPOSED CODES

Let zmn be the log-likelihood ratio(LLR) of bit n which is
sent from the bit node n to check node m, and zm be the a
priori probability of the degree-1 bit node in check m. Then,
the check node message updating rule of a belief-propagation
algorithm can be given as[6]

Tm =
∏

n′∈N(m)

1 − exp(zmn′)
1 + exp(zmn′)

(1)

Tmn = Tm × 1 − exp(zm)
1 + exp(zm)

/
1 − exp(zmn)
1 + exp(zmn)

(2)

Lmn = ln
1 − Tmn

1 + Tmn
, (3)

where Lmn denotes the LLR of bit n and N(m) denotes the
set of bits that participate in check m except for the degree-1
bit node. The bit node message updating rule can be similarly
given as

zmn = Fn +
∑

m′∈M(n)\m

Lm′n, (4)

where Fn denotes the LLR of bit n which is derived from the
received value yn and M(n) \ m denotes the set of checks
that participate in bit n except for the check m.

For the decoding of the proposed concatenated LDGM
codes, we first decode the inner code by using the inner
decoder. Then the inner decoded outputs are de-interleaved,
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Fig. 4. Modified belief propagation algorithm.
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Fig. 5. BER performance of each type of concatenated LDGM codes.

and we decode the outer code by using the same inner decoder
with the following modification. Let S(j) be the set of the
inner check nodes which were expanded from the same check
node j of the outer code, and Cj be a new check node
participated in S(j). Then in Cj we derive T ′

j between (1)
and (2) as follows:

T
′
j =

⎧
⎨

⎩
∏

m∈S(j)

Tm

⎫
⎬

⎭

1/r

(5)

In the above equation, since the number of the edges among
the inner bit nodes is r times larger than that among the outer
bit nodes, the same messages propagated from bit nodes to the
check node Cj is multiplied by itself r times. For this reason,
in the check node Cj , we should extract the rth root given in
(5). Then, the remaining message updating procedure (2) and
(3) are the same except that Tm is replaced by T ′

j .
For the bit node message updating rule, since the same

messages from the check node Cj is added by itself r times
in every bit node, (4) is modified as follows:

zmn = Fn +
1
r
×

∑

m′∈M(n)\m

Lm′n

The entire modified belief-propagation algorithm for the pro-
posed concatenated LDGM codes is described in Fig. 4. In
conclusion, the inner decoder can be used to decode the outer
code with a few additional computations.

V. SIMULATION RESULTS

The simulation results of comparisons between Garcia-
Frias’s concatenated scheme and the proposed scheme are
presented. Figure 5 shows the performance of rate 0.475
concatenated LDGM codes of length 20000 and 2000 over
AWGN channel. We use rate 0.5 (20000, 10000, 6) inner
LDGM code and a rate 0.95 (10000, 500, 3) outer LDGM code
for length 20000. The same outer code is used in both Garcia-
Frias’s and the proposed scheme. Garcia-Frias’s inner code is
randomly constructed by a PEG algorithm, but in the proposed
scheme, the inner code is constructed by expanding the outer
code as described earlier. For both codes, a maximum of 50
iterations for inner code and 20 iterations for outer code are
performed. At a bit error rate of 10−5, the performance of the
proposed code without a bit-interleaver is about 0.2 dB away
from Garcia-Frias’s code. With a bit-interleaver, the proposed
code has almost the same performance as Garcia-Frias’s. For
concatenated LDGM code of length 2000 in Fig. 5, we can
confirm similar results. The results show that the proposed
concatenated codes with a single decoder and a bit-interleaver
achieves a performance close to Garcia-Frias’s code.

VI. CONCLUSION

We propose a design criterion of concatenated LDGM codes
which require a single decoder and a bit-interleaver. The inner
LDGM code can be obtained from the outer LDGM code by
expanding each row of the parity check matrix of the outer
LDGM code into multiple rows and these rows are used to
construct the parity check matrix of an inner LDGM code. For
the proposed codes, we can use the inner decoder to decode the
outer code with slight modification to the belief-propagation
algorithm. Simulation results show that the performance of the
proposed codes is almost the same as that of Garcia-Frias’s
with much reduced decoder hardware complexity.
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