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invoked with EXPAND (;; 0) and M is a global variable whose initial
value is

2nR

T�1

i=1
Si

where R is the largest previously known sum rate.
In prescribing the sizes of the constituent codes, we let

S1 � S2 � � � � � ST�1 �M + 1:

Algorithm 1 should be invoked for all (minimal) combinations of sizes
that could improve on the best known bound.

The software packages Cliquer [9] and nauty [8] were used for
finding independent sets and detecting equivalent solutions, respec-
tively. Using Algorithm 1 the following record-breaking codes were
found for T -user binary adder channels with 3 � T � 5. For the
3-user channel, the code (with the binary codewords in decimal format)

C1 = f3; 4; 59; 60g

C2 = f22; 23; 24; 25; 30; 33; 38; 39; 40; 41g

C3 = f8; 10; 13; 15; 18; 21; 23; 32; 42; 45; 46; 48; 50; 53; 55g

of length n = 6 has sum rate

log
2
600

6
� 1:5381:

For the 4-user channel, the code

C1 = f0; 15g

C2 = f6; 7; 8; 9g

C3 = f3; 4; 11; 12g

C4 = f1; 5; 10; 14g

of length n = 4 has sum rate

log
2
128

4
= 1:75:

There are exactly two inequivalent codes with these parameters and
values of Si. Finally, for the 5-user channel, the code

C1 = f6; 9g

C2 = f5; 10g

C3 = f3; 12g

C4 = f0; 15g

C5 = f0; 1; 2; 3; 4; 5; 6; 7; 8; 11; 13; 14g

of length n = 4 has sum rate

log
2
192

4
� 1:8962:

There are exactly two inequivalent codes also in this case.
As in the case of good 2-user codes, many of the constituent codes

are self-complementary, that is, if c 2 Ci, then �c 2 Ci; cf. [7]. In fact,
to speed up the search that led to the record-breaking 3-user code, we
required that the first two constituent codes be self-complementary.

The current approach is obviously computationally feasible only for
small lengths and small numbers of users, the bottleneck being the

number of partial solutions (and thereby the number of times a clique
search has to be carried out). One could, however, impose further struc-
ture on the codes to be able to consider larger values of n.
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Cross Correlation of Sidel’nikov Sequences and Their
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Abstract—In this correspondence, we prove that the complex crosscor-
relation of a k-ary Sidel’nikov sequence of period q � 1 and its constant
multiple sequence is upper bounded by

p
q + 3, where q = p and here p

is an odd prime and m is a positive integer.

Index Terms—Autocorrelation, cross correlation, Sidel’nikov sequences.

I. INTRODUCTION

In code-division multiple-access (CDMA) communication systems,
the sequences used as signature codes are required to have a good cor-
relation property. The correlations are classified into two categories.
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One is the autocorrelation property and an impulse like autocorrela-
tion is essential for synchronization. Many researchers have studied the
sequences with a low autocorrelation [1]–[3]. The other category is a
crosscorrelation of a pair of or a number of sequences. For the purpose
of using sequences as signature codes in the multiple access system, we
need a set of sequences with a low crosscorrelation. In an environment
in which multiple users share the resources (e.g., time and frequency),
it is more desirable to use the set of sequences having as low crosscor-
relation values as possible with each other [4].

In 1969, Sidelnikov showed that two kinds of character sequences
have a good autocorrelation. These sequences are defined as follows.

Definition 1 (Type-1 [5]): Let p be an odd prime, k a divisor of
p� 1 and � a primitive root mod p. The nonzero integers mod p can
be partitioned into k cosets Ci, 0 � i � k � 1, where C0 is the set
of the kth power residues mod p, and Ci = �iC0 for i > 0. Define a
k-ary sequence fs(n)j0 � n < pg of length p as follows:

s(n) =
0; if n = 0

i; if n 2 Ci = �i C0

For convenience, we will call this Type-1 sequence. Note that the index
n of fs(n)g can be regarded as an integer mod p, while the value s(n)
can be regarded as an integer mod k.

Definition 2 (Type-2 [5]): Let Fq be a finite field with q = pm

elements, k a divisor of q� 1, and � a primitive element in Fq , where
p is an odd prime and m is a positive integer. Define a k-ary sequence
ft(n)j0 � n < q � 1g of length q � 1 as follows:

t(n) =
0; if �n + 1 = 0 () n = q�1

2

i; if �n + 1 2 �iC0

where C0 is the set of kth power residues in Fq . For convenience, we
will call this Type-2 sequence. Note that the index n of ft(n)g can be
regarded as an integer mod q�1, while the value t(n) can be regarded
as an integer mod k.

Definition 3: Let fs(n)g be a k-ary sequence of length N . Then
a constant c multiple sequence fcs(n)g of fs(n)g is defined as the
sequence whose ith term is given as cs(i) mod k, where c is an integer
such that 1 � c < k and s(i) is the ith term of fs(n)g.

Recently, in [6], they have applied the constant multiplication and
decimation to Type-1 sequences and calculated the crosscorrelation,
which will be recalled briefly in Section III. In this correspondence,
we consider the constant multiple of a k-ary Type-2 sequence and cal-
culate the crosscorrelation of a k-ary Type-2 sequence and its constant
multiple sequences.

II. PROPERTIES OF k-ARY TYPE-1/TYPE-2 SEQUENCES

The properties of k-ary Type-1 sequences are summarized as fol-
lows.

Lemma 1 (Properties of Type-1 Sequences [5]): Let fs(n)g be a
k-ary Type-1 sequence of period p and w a complex primitive kth root
of unity. Then,

i) s(1) = 0.
ii) For u 6= 0; v 6= 0, we have

s(u) + s(v) � s(uv) mod k

and

s(u)� s(v) � s(u=v) mod k

where uv and u=v are computed modulo p.

iii) For any u 2 Z�

p , we have

ws(�u) =
�ws(u); if p � k + 1 mod 2k

ws(u); if p � 1 mod 2k.

iv) p�1
n=0 w

s(n) = 0.
v) For any � 6= 0, the autocorrelation is given as follows:

Rs(�)

p�1

x=0

ws(x+�)�s(x)

=
�1� j2�(�); if p � k + 1 mod 2k

�1 + 2�(�); if p � 1 mod 2k

where �(u) and �(u) are the real and imaginary part of ws(u),
respectively.

Remark 1: Type-1 sequence of period p can easily generalized so
that it can be defined over some prime power field Fq as follows. Let
� be a primitive element of Fq where q = pm is a power of a prime
p, and k be a divisor of q � 1. Let C0 be the set of kth powers in
F
�

q = Fqnf0g, and Ci = �iC0 for 1 � i < k. Then, for any x 2 F�

q

we define s(x) = i if x 2 Ci and s(0) = 0. Note that s(x) for each
x 2 Fq is well defined, but it can no longer be viewed a “sequence”
of period q unless some reference order of elements of Fq is chosen.
However, we call it a generalized Type-1 sequence (overFq) of period
q (defined by �) if the order does not matter (which is mostly the case
in the following). Note that the property (ii) in Lemma 1 still holds,
in other words, s(u) � s(v) � s(uv)(mod k) and s(u) � s(v) �
s(u=v)(mod k) for u; v 2 F�

q .

Theorem 1 ([5]): Let ft(n)g be a k-ary Type-2 sequence of period
q � 1 defined by a primitive element �. Then, for any � 6= 0, the
autocorrelation is given as follows:

Rt(�) =

q�2

x=0

wt(x+�)�t(x)

= � ws(� ) � 1 + ws(�� +1) + w�s(�� +1)

where fs(x)jx 2 Fqg is the generalized Type-1 sequence of period q
defined by � as in Remark 1.

Corollary 1: Let ft(n)g be a k-ary Type-2 sequence of period q�1
defined by a primitive element �. Then, for any � 6= 0, the autocor-
relation of the sequence which is obtained by multiplying a nonzero
constant c to ft(n)g is given as follows:

Rc�t(�) =

q�2

x=0

wc�t(x+�)�c�t(x)

= � wc�s(� ) � 1 + wc�s(�� +1) + w�c�s(�� +1)

where fs(x)jx 2 Fqg is the generalized Type-1 sequence of period q
defined by � as in Remark 1.

Note that the magnitude of out-of-phase autocorrelation of Type-2
sequence is not greater than 4. Furthermore, the magnitude of the
out-of-phase autocorrelation of the sequence which is obtained by
multiplying a nonzero constant mod k is also not greater than 4.

As is stated above, the magnitude of autocorrelation of Type-1=2 se-
quences does not increase as the period of sequences increases. There-
fore, it is interesting to extend the number of sequences by applying
some simple transformations (e.g., constant multiplication, affine shift
and/or decimation) and to compute their crosscorrelation. We found
some interesting crosscorrelations when we multiplied a constant to a
k-ary Type-1/Type-2 sequence. In Section III, these results will be pre-
sented.
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III. CROSSCORRELATION OF k-ARY SEQUENCE AND

THEIR CONSTANT MULTIPLES

The periodic crosscorrelation between two k-ary sequences fu1(n)g
and fu2(n)g of period N is defined by

Cu ;u (� ) =

N�1

n=0

wu (n+�)�u (n)

where w is a complex primitive kth root of unity.

Theorem 2 ([6]): The crosscorrelation of k-ary Type-1 sequence
fs1(n)g and its constant multiple sequence fs2(n)g both of length p
is upper bounded by

p
p + 2, i.e.

jCs ;s (�)j � p
p+ 2:

Theorem 3 (Main Result): Let ft(n)j0 � n < q � 1g be a k-ary
Type-2 sequence of length q� 1 and t1(n) = c1t(n), t2(n) = c2t(n)
for all n, where c1; c2 are integers with 1 � c1 6= c2 � k�1. Then the
crosscorrelation of ft1(n)g and ft2(n)g is upper bounded by

p
q+3,

i.e.

jCt ;t (�)j � p
q + 3:

For the proof of Theorem 3, we need the properties of the gener-
alized Type-1 sequences defined over the prime power field Fq as in
Remark 1. We also need the following lemma.

Lemma 2: Let q be a power of a prime and fs(x)jx 2 Fqg be a
k-ary generalized Type-1 sequence of period q defined by � as dis-
cussed in Remark 1. Let w be a complex primitive kth root of unity,
and e be any integer from 1 to k�1. Then we have the following iden-
tity:

x2F

ws(yx ) = 0; 8 y 2 F�q : (1)

Proof: The generalized Type-1 sequence fs(x)jx 2 Fqg satisfies
s(u)+ s(v) = s(uv) mod k for all u; v 2 F�q . Letting d (e; k) be
the gcd of e and k, and k1 = k=d, we have

x2F

ws(yx ) =

x2F

ws(y)ws(x )

=ws(y)

0�i<q�1

ws(� )

=ws(y) q � 1

k1
0�i<k

wid = 0

where we note that s(�ei) takes all the values 0; d; 2d; . . . ; (k1 � 1)d
exactly q�1

k
times as i takes values from 0 to q � 2

Proof of Theorem 3: We now calculate the crosscorrelation of
ft1(n) = c1t(n)g and ft2(n) = c2t(n)g where c1; c2 are any given

integers from 1 to k � 1. Without loss of generality, assume that 0 <
c2 < c1 < k.

Note that since t(n) = i when �n + 1 2 Ci = �iC0, we have
t(n) = s(�n+1), where s(x) is the generalized Type-1 sequence de-
fined by the primitive element �. For simplicity, denote a(x) = ws(x).
Therefore, when �n + 1 6= 0, wt(n) = ws(� +1) = a(�n + 1).

We will first take care of the case where � = 0 as follows:

Ct ;t (� = 0) =

q�2

n=0

wc t(n)�c t(n)

= a(0)c a(0)�c

+
0�n<q�1

n6=

a(�n + 1)c a(�n + 1)�c

=1 +

x2F nf1g

a(xc �c ) = 0

from Lemma 2, since 1 < c1 � c2 < k.
We now assume that � 6= 0. Then

Ct ;t (�) =
0�n<q�1

wc t(n+�)�c t(n)

= a(0)c a(���� + 1)�c + a(��� + 1)c a(0)�c

+
0�n<q�1

n6= ; ��

a(�n+� + 1)c a(�n + 1)�c

= a(���� + 1)�c + a(��� + 1)c

+

x2F nf�1;�� g

a
(��x+ 1)c

(x+ 1)c
: (2)

Denote the third term of (2) by �(�). Since magnitude of the sum of
the first two terms cannot exceed 2, it is now sufficient to show that,
for any � 6= 0

j�(� )j � p
q + 1:

Observe the equation shown at the bottom of the page, where � is a
complex conjugate. Denote �1 + ��� by v. Note that since � 6= 0,
v =2 f0;�1g.

j�(� )j2 =
x2F

x6=1;�v

y2F

y 6=1;�v

a
x+ v

y + v

c
y

x

c

:

Substitute 1=x instead of x. Then

j�(� )j2 =
x2F

x6=1;�1=v

y2F

y 6=1;�v

a
1 + vx

yx + vx

c

(yx)c :

j�(� )j2 =
x2F nf�1;�� g

a
(��x+ 1)c

(x+ 1)c
y2F nf�1;�� g

a
(��y + 1)c

(y + 1)c

�

=

x2F nf�1;�� g y2F nf�1;�� g

a
��x+ 1

��y + 1

c
y + 1

x + 1

c

=

x2F nf1;1�� g y2F nf1;1�� g

a
x� 1 + ���

y � 1 + ���

c
y

x

c
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Let us consider the number of terms in the above double summation.
There are (q�3)2 terms. These can be re-ordered according to whether
yx = 1 or yx 6= 1. See (3) shown at the bottom of the page. Now, all we
have to show is that the last term of (3) is less than or equal to 2

p
q+4.

We will denote the term by �(� ). We now change the variables from
x and y to x and yx = z so that

�(�) =
yx 6=1

x2F nf1;�1=vg

y2F nf1;�vg

a
1 + vx

yx + vx

c

(yx)c

=

x2F nf1;�1=vg

z2F nf1;x;�vxg

a
1 + vx

z + vx

c

zc

=

x2F nf�1=vg

z2F nf1;�vxg

a
1 + vx

z + vx

c

zc

�
x=1

z2F nf1;�vg

a
1 + v

z + v

c

zc

�
x2F nf1;�1=vg

z=x

a
1 + vx

x+ vx

c

xc : (4)

Denote the first, the second and the third term in (4) as�(v), A(v) and
B(v), respectively. Therefore

�(�) = �(v)� A(v)�B(v) (5)

where v = �1 + ��� . Observe that

A(v) =
x=1

z2F nf1;�vg

a
1 + v

z + v

c

zc

= a(1 + v)c

z2F nf�vg

a
zc

(z + v)c
� a(1);

B(v) =

x2F nf1;�1=vg
z=x

a
1 + vx

x + vx

c

xc

=

x2F nf�vg

a
1 + v=x

1=x+ v=x

c
1

x

c

� a(1)

= a(1 + v)�c

x2F nf�vg

a
(x+ v)c

xc
� 1: (6)

By denoting the summation term in (6) as �(v), we obtain
A(v) = a(1 + v)c �(v)� � 1 and B(v) = a(1 + v)�c �(v)� 1.

Observe the following:

j�(v)j2 =
x2F nf�vg

a
(x+ v)c

xc

�
y2F nf�vg

a
(y + v)c

yc

�

=

x2F nf�vg

y2F nf�vg

a
x+ v

y + v

c
y

x

c

:

Substitute 1=x instead of x. Then

j�(v)j2 =
x2F nf�1=vg

y2F nf�vg

a
1 + vx

yx + vx

c

(yx)c :

Let us think about how many terms are in the above double summa-
tion. There are (q � 2)2 terms. These can be re-ordered according to
whether yx = 1 or yx 6= 1

j�(v)j2 =
yx=1

x2F nf�1=vg

y2F nf�vg

a(1)

+
yx6=1

x2F nf�1=vg

y2F nf�vg

a
1 + vx

yx + vx

c

(yx)c

= q � 2 +

x2F nf�1=vg

z2F nf1;�vxg

a
1 + vx

z + vx

c

zc : (7)

Note that the last term of (7) is exactly the same with �(v) in (4).
We put further vx = u. Then, we have

�(v) =

u2F nf�1g

z2F nf1;�ug

a
1 + u

z + u

c

zc

=

z2F nf1g

u2F nf�1;�zg

a(zc )a
1 + u

z + u

c

=

z2F nf1g

a(zc )

u2F nf�1;�zg

a
1 + u

z + u

c

:

The inner sum of the above can be computed to be the sum of a(x)c

for all x 2 F�q except for two terms which are a(1)c and a(z�1)c

j�(�)j2 =
yx=1

x2F nf1;�1=vg

y2F nf1;�vg

a(1) +
yx6=1

x2F nf1;�1=vg

y2F nf1;�vg

a
1 + vx

yx + vx

c

(yx)c

= q � 3 +
yx6=1

x2F nf1;�1=vg

y2F nf1;�vg

a
1 + vx

yx + vx

c

(yx)c : (3)
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since the map u! 1+u
z+u

is one-to-one for u 2 F�q n f�1;�zg. There-
fore

�(v) =

z2F nf1g

a(zc )(�a(1)c � a(z�1)c )

= �
z2F nf1g

a(zc )�
z2F nf1g

a(zc �c )

= a(1) + a(1) = 2:

Hence, we have j�(v)j2 = q. It gives us

�(� ) =�(v)�A(v)�B(v)

= 4� a(1 + v)c �(v)� � a(1 + v)�c �(v):

Therefore, 4 � 2
p
q � �(�) � 4 + 2

p
q .

By revisiting the (2), we obtain

Ct ;t (�) = a(���� + 1)�c + a(��� + 1)c + �(�)

where
p
q�1�j�(� )j�pq+1. It completes the proof of Theorem 3.

In the proof of Theorem 3, we see that the crosscorrelation at � = 0 is
0 for any c1 6= c2, which we emphasize here in the following corollary.

Corollary 2: Keep the notations in Theorem 3. Then Ct ;t (� =
0) = 0.

IV. COMPARISON WITH WELCH BOUND

Let Ramax denote the maximum out-of-phase autocorrelation of a
given sequence a = fa(n)g. Let Ca;b

max denote the maximum cross
correlation of two sequences a = fa(n)g and b = fb(n)g. In 1974,
Welch derived a periodic correlation bound of a signal set S with M

signals of length L[7] as

C
2
max � L2(M � 1)

(ML� 1)
(8)

where Cmax = maxfRa

max; C
a;b
maxja;b( 6= a) 2 Sg.

Consider a sequence setSwhich consists of a k-ary Type-2 sequence
ft(n)g of length q�1 and its all the constant multiple sequences. Since
k� 1 distinct ways are possible to multiply a constant c to ft(n)g and
c = 1 gives us the same sequence as ft(n)g, the cardinality of S is
k � 1, i.e., M = jSj = k � 1. From Theorem 1 and Corollary 1, we
know that Ra

max � 4 for any a 2 S. Furthermore, from Theorem 3,
Ca;b
max � p

q+3 for any distinct a; b 2 S. Therefore,Cmax � p
q+3.

Now apply the Welch bound (8) to this sequence set S. Since L =
q � 1 and M = k � 1, (8) becomes as follows:

Cmax � (q � 1)2(k� 2)

(q � 1)(k� 1)� 1
: (9)

Denote the right hand side of (9) asLB . Note that this bound depends
on the value of k, a divisor of q � 1. For two divisors k1 and k2 of
q � 1, if k1 < k2, then L(k )

B < L
(k )
B where L(k )

B and L(k )
B are LB

values corresponding to k1 and k2, respectively. Therefore, the larger
k is, the larger LB is. It can be understood intuitively because a larger
k means that more sequences exist in the set and cross correlation of
the set increases accordingly. If q � 1 = k � t for some integer t, LB

converges to
p
q � 1� t as q increases. Note that for a sufficiently

large q and k such that q�1
k

= t� q,
p
q � 1� t � p

q. On the other

TABLE I
COMPARISON OF CROSS CORRELATION AND ITS BOUND OF TYPE-2 SEQUENCES

hand, the actual Cmax of S is less than or equal to
p
q+3, which does

not depend on the value of k. Therefore, in these cases, the LB and the
actual Cmax of the set S are approximately same.

To compare the actual cross correlation and the upper bound given
in the previous section and the Welch boundLB , we present Table I for
all the primes q � 103 and the maximum divisor k < q � 1 of q � 1.

V. CONCLUSION

In this correspondence, we have proved that the cross correlation
between k-ary Type-2 sequences of period q� 1 which was originally
suggested by Sidel’nikov and its constant multiple sequences is upper
bounded

p
q+3. Since there are k�1 distinct ways to multiply a con-

stant to the given k-ary Type-2 sequence, it gives us a sequence family
where there are k � 1 sequences whose maximum out-of-phase auto-
correlation are less than 4 and the maximum cross correlation between
any distinct sequences in the family is not greater than

p
q + 3. For a

sufficiently large q and k, the maximum cross correlation of the family
is approximately the same as the Welch’s bound.
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