1220

invoked with EXPAND ({}, 0) and M is a global variable whose initial

value is
an
L= S

where R is the largest previously known sum rate.
In prescribing the sizes of the constituent codes, we let

Sl SSZ S"'SS’[71 gﬂ[ﬁ-l

Algorithm 1 should be invoked for all (minimal) combinations of sizes
that could improve on the best known bound.

The software packages Cliquer [9] and nauty [8] were used for
finding independent sets and detecting equivalent solutions, respec-
tively. Using Algorithm 1 the following record-breaking codes were
found for T -user binary adder channels with 3 < T < 5. For the
3-user channel, the code (with the binary codewords in decimal format)

Cy ={3,4,59,60}
Cy ={22,23,24,25,30,33,38,39,40,41}
Cs = {8,10,13,15, 18, 21,23,32, 42, 45, 46, 48, 50, 53,55}

of length » = 6 has sum rate

log, 600 _

G 1.5381.

For the 4-user channel, the code

¢, ={0,15}

Cy =1{6,7,8,9}
Cs ={3,4,11,12}
Cy ={1,5,10, 14}

of length n = 4 has sum rate

log, 128

4

1.75.

There are exactly two inequivalent codes with these parameters and
values of S;. Finally, for the 5-user channel, the code

C1 ={6,9}
Cy ={5,10}
Cz ={3,12}
Cy ={0,15}

Cs ={0,1,2,3,4,5,6,7,8,11,13,14}

of length n = 4 has sum rate

log, 192 ~ 1.8962.
4
There are exactly two inequivalent codes also in this case.

As in the case of good 2-user codes, many of the constituent codes
are self-complementary, that is, if ¢ € C';, then ¢ € C; cf. [7]. In fact,
to speed up the search that led to the record-breaking 3-user code, we
required that the first two constituent codes be self-complementary.

The current approach is obviously computationally feasible only for
small lengths and small numbers of users, the bottleneck being the
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number of partial solutions (and thereby the number of times a clique
search has to be carried out). One could, however, impose further struc-
ture on the codes to be able to consider larger values of n.
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Cross Correlation of Sidel’nikov Sequences and Their
Constant Multiples
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Abstract—In this correspondence, we prove that the complex crosscor-
relation of a k-ary Sidel’nikov sequence of period ¢ — 1 and its constant
multiple sequence is upper bounded by /g + 3, where ¢ = p™ and here p
is an odd prime and im is a positive integer.

Index Terms—Autocorrelation, cross correlation, Sidel’nikov sequences.

I. INTRODUCTION

In code-division multiple-access (CDMA) communication systems,
the sequences used as signature codes are required to have a good cor-
relation property. The correlations are classified into two categories.
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One is the autocorrelation property and an impulse like autocorrela-
tion is essential for synchronization. Many researchers have studied the
sequences with a low autocorrelation [1]-[3]. The other category is a
crosscorrelation of a pair of or a number of sequences. For the purpose
of using sequences as signature codes in the multiple access system, we
need a set of sequences with a low crosscorrelation. In an environment
in which multiple users share the resources (e.g., time and frequency),
it is more desirable to use the set of sequences having as low crosscor-
relation values as possible with each other [4].

In 1969, Sidelnikov showed that two kinds of character sequences
have a good autocorrelation. These sequences are defined as follows.

Definition 1 (Type-1 [5]): Let p be an odd prime, % a divisor of
p — 1 and p a primitive root mod p. The nonzero integers mod p can
be partitioned into & cosets C;, 0 < ¢ < k — 1, where Cy is the set
of the kth power residues mod p, and C; = ,u‘Co for 7 > 0. Define a
k-ary sequence {s(n)|0 < n < p} of length p as follows:

o(n) = 0, ifn=0
YT, ifneCi=pt Co

For convenience, we will call this Type-1 sequence. Note that the index
n of {s(n)} can be regarded as an integer mod p, while the value s(n)
can be regarded as an integer mod k. O

Definition 2 (Type-2 [5]): Let F4 be a finite field with ¢ = p™
elements, % a divisor of ¢ — 1, and p a primitive element in F;, where
p is an odd prime and m is a positive integer. Define a k-ary sequence
{t(n)|0 < n < ¢ — 1} of length ¢ — 1 as follows:

t(n) = { 0
,

where (Y is the set of kth power residues in F,. For convenience, we
will call this Type-2 sequence. Note that the index n of {¢(n)} can be
regarded as an integer mod g— 1, while the value ¢(n) can be regarded
as an integer mod k. O

ifp"+1=0(=n=
ifpu” 4+ 1€ p'Co

q*l)
2

Definition 3: Let {s(n)} be a k-ary sequence of length N. Then
a constant ¢ multiple sequence {cs(n)} of {s(n)} is defined as the
sequence whose ith term is given as ¢s(i) mod k, where ¢ is an integer
suchthat 1 < ¢ < k and s(7) is the ith term of {s(n)}. O

Recently, in [6], they have applied the constant multiplication and
decimation to Type-1 sequences and calculated the crosscorrelation,
which will be recalled briefly in Section III. In this correspondence,
we consider the constant multiple of a k-ary Type-2 sequence and cal-
culate the crosscorrelation of a k-ary Type-2 sequence and its constant
multiple sequences.

II. PROPERTIES OF %k-ARY TYPE-1/TYPE-2 SEQUENCES

The properties of k-ary Type-1 sequences are summarized as fol-
lows.

Lemma 1 (Properties of Type-1 Sequences [5]): Let {s(n)} be a
k-ary Type-1 sequence of period p and w a complex primitive kth root
of unity. Then,

i) s(1) = 0.

ii) For u # 0, v # 0, we have

s(u) + s(v) =s(uv) mod k
and
s(u) — s(v) =s(u/v) mod k

where v and u /v are computed modulo p.
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iii) For any v € Z,, we have

u]s(—u) — { —71!"7(“)7

s(u
w®

ifp=k+4+1mod 2k
if p =1 mod 2k.

iv) P2 wil = 0.
v) For any 7 # 0, the autocorrelation is given as follows:

p—1
R.(r) & Z'Lt!s($+r)7s(x)
xz=0
[ =1=328(7), ifp=k+1mod 2k
T -142a(r), ifp=1mod 2k

where «(u) and 3(u) are the real and imaginary part of w*(*),

respectively.

Remark 1: Type-1 sequence of period p can easily generalized so
that it can be defined over some prime power field F, as follows. Let
1t be a primitive element of F; where ¢ = p™ is a power of a prime
p, and k be a divisor of ¢ — 1. Let Cy be the set of kth powers in
F; = F,\{0},and C; = pi'Cy for 1 < i < k. Then, for any = € F}
we define s(z) = ¢ if # € C; and s(0) = 0. Note that s(x) for each
x € F, is well defined, but it can no longer be viewed a “sequence”
of period ¢ unless some reference order of elements of F; is chosen.
However, we call it a generalized Type-1 sequence (over F',) of period
¢ (defined by p) if the order does not matter (which is mostly the case
in the following). Note that the property (ii) in Lemma 1 still holds,
in other words, s(u) — s(v) = s(uv)(mod k) and s(u) — s(v) =
s(u/v)(mod k) for u,v € Fy. O

Theorem 1 ([5]): Let {t(n)} be a k-ary Type-2 sequence of period

q — 1 defined by a primitive element . Then, for any 7 # 0, the
autocorrelation is given as follows:

q—2

Z “)t(.r,-‘rr)—f,(a:)

=0

Ri(7) =
= — ') _q + wsrTHD + wsrTTHD
where {s(x)|x € F,} is the generalized Type-1 sequence of period ¢
defined by p as in Remark 1.

Corollary 1: Let {t(n)} be a k-ary Type-2 sequence of period ¢ — 1
defined by a primitive element j. Then, for any 7 # 0, the autocor-
relation of the sequence which is obtained by multiplying a nonzero
constant ¢ to {t(n)} is given as follows:

q—2
Z wc-t(r«kr)fc-t(r)
x=0

s () _ ] L e (i) g mens(—nT T

RC-t(T) =

= —

where {s(x)|z € F,} is the generalized Type-1 sequence of period g
defined by 4 as in Remark 1.

Note that the magnitude of out-of-phase autocorrelation of Type-2
sequence is not greater than 4. Furthermore, the magnitude of the
out-of-phase autocorrelation of the sequence which is obtained by
multiplying a nonzero constant mod F is also not greater than 4.

As is stated above, the magnitude of autocorrelation of Type-1/2 se-
quences does not increase as the period of sequences increases. There-
fore, it is interesting to extend the number of sequences by applying
some simple transformations (e.g., constant multiplication, affine shift
and/or decimation) and to compute their crosscorrelation. We found
some interesting crosscorrelations when we multiplied a constant to a
k-ary Type-1/Type-2 sequence. In Section III, these results will be pre-
sented.
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III. CROSSCORRELATION OF k-ARY SEQUENCE AND
THEIR CONSTANT MULTIPLES

The periodic crosscorrelation between two k-ary sequences {u1(n)}
and {uz(n)} of period N is defined by

Z i (nE )= uz(n)

n=0

“1 u (T)

where w is a complex primitive kth root of unity.

Theorem 2 ([6]): The crosscorrelation of k-ary Type-1 sequence
{s1(n)} and its constant multiple sequence {s2(n)} both of length p
is upper bounded by /p + 2, i.e.

ICsion (DI < VP + 2.

Theorem 3 (Main Result): Let {t(n)|0 < n < ¢ — 1} be a k-ary
Type-2 sequence of length ¢ — 1 and ¢, (n) = cit(n), t2(n) = c2t(n)
for all n, where ¢, ¢ are integers with 1 < ¢1 # ¢2 < k— 1. Then the

crosscorrelation of {#1(n)} and {t2(n)} is upper bounded by /g + 3,
ie.

[Cty 65 (T)] \/E +3.

For the proof of Theorem 3, we need the properties of the gener-
alized Type-1 sequences defined over the prime power field F, as in
Remark 1. We also need the following lemma.

Lemma 2: Let g be a power of a prime and {s(z)|xz € F,} be a
k-ary generalized Type-1 sequence of period ¢ defined by p as dis-
cussed in Remark 1. Let w be a complex primitive kth root of unity,
and e be any integer from 1 to £ — 1. Then we have the following iden-

tity:
> w0,

xEF;

VyeF. (M

Proof: The generalized Type-1 sequence {s(z)|z € F,} satisfies
s(u)+ s(v) = s(uv) mod k forall u,v € Fy. Letting d £ (e, k) be
the gcd of e and %, and k1 = k/d, we have

Z Wi = Z w59

IGFZ IGFZ
=w*® Z w )
0<i<g—1
s -1
S V) Bl Z W't =
k 0<e<ky
where we note that s(;*) takes all the values 0, d, 24, ..., (ki — 1)d
exactly % times as ¢ takes values from O to ¢ — 2 O

Proof of Theorem 3: We now calculate the crosscorrelation of
{ti(n) = c1t(n)} and {t2(n) = cat(n)} where ¢y, c2 are any given
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integers from 1 to £ — 1. Without loss of generality, assume that 0 <
o < 1 < k.

Note that since #(n) = i when p” + 1 € C; = u'Cy, we have
t(n) = s(p" + 1), where s(x) is the generalized Type-1 sequence de-
fined by the primitive element z. For simplicity, denote a(z) = w*(®),
Therefore, when p” + 1 # 0, w'™ = w* "+ = q(p™ 4 1).

We will first take care of the case where 7 = 0 as follows:

q—2

Z w crt(n)—cot(n)

n=0
= a(0) a(0)™"

+ Z a(p”

0<n<g—1
"i?

=1+ >

T€FI\{1}

CflﬁfQ(T = 0) =

+ 1) alu" 4+ 1)

a(zt™2) =0

from Lemma 2, since 1 < ¢; — 2 < k.
We now assume that 7 # 0. Then

051712 (T) = Z
0<n<g—1
=a(0)*a(—p~

+ Z
0<n<g—1
qg—1 q—1
nF iy g =T

=a(—p T+ 1T Ha(—p + 1)

n > ; (M) )

(4 1)
SEFI\{—1,—p 7}

wclt(vL+T)—L‘2 t(n)

T+ D)2 4 a(—p" +1)a(0)”
a’(‘”’n-‘rr 4 1)610(”/77, 4 1)—(?2

Denote the third term of (2) by #(7). Since magnitude of the sum of
the first two terms cannot exceed 2, it is now sufficient to show that,
forany 7 # 0

B(r)| < Vi + 1.

Observe the equation shown at the bottom of the page, where * is a
complex conjugate. Denote —1 + ;=" by v. Note that since 7 # 0,
v ¢ {0,—1}.

2 r+o\7" ryy\e2
ror= 303 () ()
IEF; yeF;
z#£l,—v y#l,—v

Substitute 1/ instead of 2. Then

W (P
TGF* = yr + v
a:;él,fl/v y;é],—w

()1 =

) 1 (z/»r)"2> :

l6(m)|* =

>

SEFIN{~1,—u 7}

>

(x4 1)c2

>

eC€F\{—1,—p T} yeF\{—1,—n" "}

> >

SEFIN{1,1-p T} y€F\ {1,157}

(U y

a ((/”T?J + 1) >
\ (y+ 1)

YyEFN{~1,—1" 7}

" pTa 4+ 1\ [y +1\2

‘ ny+1 r+1
e—=1+p" "\ fy\e

a((y—l—l—u—T) (r)
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Let us consider the number of terms in the above double summation.

O(r) =

yx = loryx # 1.See (3) shown at the bottom of the page. Now, all we
have to show is that the last term of (3) is less than or equal to 2, /g +4.
yrF£l
1+ve\7" .,
- Z “ z 4oz -
2EFIA{1,—1/v} s
mEFZ\{—]/w} <
ZEF;\{],—UT,}
- X o
=1
z€F \{1,—v}

There are (¢ — 3)? terms. These can be re-ordered according to whether
We will denote the term by ©(7). We now change the variables from
x and y to @ and yx = z so that
140z \7 .
(G5) o)
IGFZ\{I,fl/v}
yEF \{1,—v}
zEF;\{] ,o,—vx}
>
- >
.l'EFq*\{l,—l/u}

“

=z

Denote the first, the second and the third term in (4) as A(v), A(v) and
B(v), respectively. Therefore

O(r) = A(v) — A(v) — B(v) Q)
where v = —1 4 =7 . Observe that
1+0\7" .
A(v) = 22
w= () )
ZEFZ\{I,fu}
c 22
maaeor 3 o) o
2€F \{-v}
14+vz\" .
B(v) = ! x™?
(7)> Z “ ((:v—l—w:) v >

;IJEF;\‘/{_l,‘—l/U}

> oe(E) e e

‘ xe2
€F;\{—v}

=a(l+v)™

By denoting the summation term in (6) as é(v), we obtain
A(w) =a(l4+v)16(v)" —1and B(v) = a(1 4 v)"16(v) — 1.
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Observe the following:

. Lt
P =Y a <M)
xe2
2€F \{-v}
(y+v)”>
| X (e
c2
YEFTN{ v} Y
_ Z a <(‘1”+U>Cl (g)tz)
B ‘ y+v x )
IGFZ\{fu} Y
yEF \{—v}

Substitute 1/ instead of z:. Then

>

TGF;\{—1/7!}
yeEF \{—v}

1+ vx

’ <<m>l ('ym)%> _

Let us think about how many terms are in the above double summa-
tion. There are (¢ — 2)? terms. These can be re-ordered according to
whether yr = loryr # 1

>

yr=1
2€F\{~1/v}
yEF\{—v}

DY

yr#£l

a(l)
14w €1 .
a<<m> (y) >
IGF;\{_1/‘1,«}
?IEFZ\{_‘U}

>

mEFZ\{—]/w}
zEF;\{] ,—vx}

5(0)|? =

B =

Note that the last term of (7) is exactly the same with A(v) in (4).
We put further vz = w. Then, we have

> () )

WEFI\{~1}
. I4+u\?
_c2
a(z )a(z u)

ZEFZ\{I,fu}
()
a .
z4+u

ZE€FI\{1}
The inner sum of the above can be computed to be the sum of a(z)“!
for all z € F; except for two terms which are a(1)“* and a(z~"')"!

Av) =

uEFz\{fl,f‘z}

Z a(z?)

Z€Fi\{1}

>

uEF:\{fl,f‘z}

N2 1+ve \* e
o= X aws Y o(SE)
yr=1 yarF£l :
J?GF;\{],—]/‘U} IEFZ\{I,fl/U}
yEF \{1,—v} yEF \{1,—v}
1+vr \*
=¢-3 (=) o))
q + Z a <(y$+v$> (yx) > 3

yrZl
.l'EFq*\{l,—l/u}
YEFIN{1,—0}
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L4 s one-to-one for u € F; \ {—1, —z}. There-

since the map v — <+

fore

Al)= Y a(z?)(=a(1)? —a(z7")T)
eF\{1}
= — Z a(z?) — Z a(z?")
seF\{1} seFp\{1)

=a(l)+a(l)=2.
Hence, we have |6(v)|* = g. It gives us

O(7) =A(v) — A(v) — B(v)
=4 —a(l+v)8v)" —a(l+v) "16(v).

Therefore, 4 — 2,/ < O(7) < 44+ 2,/7 .
By revisiting the (2), we obtain

Con(r)=al=p~ "+ 172 +a(=p" +1)" +6(7)

where /q—1<16(7)|</q+ 1. It completes the proof of Theorem 3.
|

In the proof of Theorem 3, we see that the crosscorrelationat 7 = Ois

0 forany ¢; # ¢z, which we emphasize here in the following corollary.

Corollary 2: Keep the notations in Theorem 3. Then Cy, +, (7 =
0) = 0.

IV. COMPARISON WITH WELCH BOUND

Let R}, .. denote the maximum out-of-phase autocorrelation of a
given sequence a = {a(n)}. Let C2P denote the maximum cross
correlation of two sequences a = {a(n)} and b = {b(n)}. In 1974,
Welch derived a periodic correlation bound of a signal set S with M
signals of length L[7] as

9 L?*(M —1)
Cliax 2 ML =1) @)
where Cox = max{R2%,..,C%2 |a,b(# a) € S}.

Consider a sequence set S which consists of a k-ary Type-2 sequence
{t(n)} of length ¢ — 1 and its all the constant multiple sequences. Since
k — 1 distinct ways are possible to multiply a constant ¢ to {#(n)} and
¢ = 1 gives us the same sequence as {#(n)}, the cardinality of S is
k—1,ie., M = |S| = k — 1. From Theorem 1 and Corollary 1, we
know that RY, ., < 4 for any ¢« € S. Furthermore, from Theorem 3,
cab o< /q+3 forany distincta, b € S. Therefore, Crna < \/G+3.

Now apply the Welch bound (8) to this sequence set S. Since L =
q—1land M = k — 1, (8) becomes as follows:

(¢ —1)%(k-2)
Cmax 2 \/(q—l)(k—n—l‘

(C)]

Denote the right hand side of (9) as L g. Note that this bound depends
on the value of k, a divisor of ¢ — 1. For two divisors k; and k2 of
¢ —1,if ki < k2, then %" < L% where L") and LY? are Ly
values corresponding to k1 and ks, respectively. Therefore, the larger
k is, the larger L g is. It can be understood intuitively because a larger
k means that more sequences exist in the set and cross correlation of
the set increases accordingly. If ¢ — 1 = & - ¢ for some integer ¢, Lp
converges to /¢ — 1 — t as ¢ increases. Note that for a sufficiently
large ¢ and k such that q;—l =t < ¢,v/¢— 1 —1= /g Onthe other
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TABLE I
COMPARISON OF CROSS CORRELATION AND ITS BOUND OF TYPE-2 SEQUENCES

q k max Bound (=,/q+3) Lp
7 3 3.000 5.646 1.809
11 5 5.584 6.317 2.774
13 6 6.245 6.606 3.125
17 8 6.878 7.123 3.720
19 9 7.231 7.359 3.982
23 11 7.762 7.796 4.460
29 14 | 8.318 8.385 5.091
31 10 | 8.467 8.568 5.174
31 15 8.362 8.568 5.284
37 18 | 9.077 9.083 5.826
41 20 | 9.394 9.403 6.160
43 | 21 9.530 9.557 6.320
47 | 23 | 9.812 9.856 6.630
59 | 29 | 10.644 10.681 7.481
61 30 | 10.796 10.810 7.613
67 33 | 11.158 11.185 7.998
71 35 | 11.395 11.426 8.244
73 36 | 11.533 11.544 8.365
79 | 39 | 11.875 11.888 8.716
83 | 41 | 12.103 12.110 8.943
89 | 44 | 12.427 12.434 9.272
97 | 48 | 12.840 12.849 9.694
101 | 50 | 13.043 13.050 9.898
103 | 51 | 13.137 13.149 9.999

hand, the actual Cax of S is less than or equal to \/ﬁ + 3, which does
not depend on the value of k. Therefore, in these cases, the Ls and the
actual Ciy,.x Of the set S are approximately same.

To compare the actual cross correlation and the upper bound given
in the previous section and the Welch bound L g, we present Table I for
all the primes ¢ < 103 and the maximum divisor k¥ < ¢ — 1 of ¢ — 1.

V. CONCLUSION

In this correspondence, we have proved that the cross correlation
between k-ary Type-2 sequences of period ¢ — 1 which was originally
suggested by Sidel’nikov and its constant multiple sequences is upper
bounded /g + 3. Since there are k& — 1 distinct ways to multiply a con-
stant to the given k-ary Type-2 sequence, it gives us a sequence family
where there are £ — 1 sequences whose maximum out-of-phase auto-
correlation are less than 4 and the maximum cross correlation between
any distinct sequences in the family is not greater than ,/q + 3. For a
sufficiently large ¢ and %, the maximum cross correlation of the family
is approximately the same as the Welch’s bound.
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