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A Note on Low-Correlation Zone Signal Sets

Guang Gong, Member, IEEE, Solomon W. Golomb, Fellow, IEEE,
and Hong-Yeop Song, Senior Member, IEEE

Abstract—In this correspondence, we present a connection between de-
signing low-correlation zone (LCZ) sequences and the results of correlation
of sequences with subfield decompositions presented in a recent book by the
first two authors. This results in LCZ signal sets with huge sizes over three
different alphabetic sets: finite field of size q, integer residue ring modulo q,
and the subset in the complex field which consists of powers of a primitive
qth root of unity. We show a connection between these sequence designs and
“completely noncyclic” Hadamard matrices and a construction for those
sequences. We also provide some open problems along this direction.

Index Terms—Hadamard matrices of completely noncyclic type, low-cor-
relation zone (LCZ) sequences, subfield reducible sequences, two-tuple bal-
ance property.

I. INTRODUCTION

Recently, there have been some interesting developments involving
quasi-synchronous (QS) code-division multiple-access (CDMA) com-
munication systems and on the design of sequences with low-correla-
tion zone (LCZ) that can be used in such systems [2], [12], [13], [8],
[11], [14].

This correspondence will describe a general approach to the design
of LCZ sequences using the results on sequences with subfield decom-
positions, presented in [3, Ch. 8] written by the first two authors. The
above known cited results on LCZ sequences can be obtained easily
from this general setting.

The connection between an optimal set of LCZ sequences (in terms
of family size) with subfield factorization and Hadamard matrices have
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been observed now by many others, e.g., see [14]. We show, in partic-
ular, that the LCZ sequences in this correspondence are connected to
Hadamard matrices of “completely noncyclic type.”

Notation

We use the following notation throughout the correspondence.
— The finite fieldGF (qn) is denoted by q for any positive integer

n and q = pt, a power of a prime, and the multiplicative group of
q is denoted by �

q .
— The trace function from q to q where m is a factor of n,

i.e., mjn, is denoted by Trnm(x) = x+xQ+ � � �+xQ where
Q = qm and n = lm. If the context is clear, we drop the subscript
and superscript of Trn1 (x), i.e., we write Trn1 (x) as Tr(x) for
simplicity.

— � always denotes a primitive element of q .
— Let a = faig be a sequence over q of period qn � 1. Using the

(discrete) Fourier transform, there exists a polynomial function
f(x) from q to q such that ai = f(�i); i = 0; 1; . . ., which
can be written as a sum of monomial trace terms. We say that
f(x) is a trace representation of a associated with �, or a is an
evaluation of f(x) (for details, see [3]). For any function f(x)
appearing in this correspondence, we assume that f(0) = 0 if
there is no other specification. For each function f(x) from q

to q , there is a boolean representation in n variables for f(x),
denoted by f(x) = f(x1; . . . ; xn) where x = (x1; . . . ; xn) 2
n
q . Since q is isomorphic to n

q , we identify the elements of
q as vectors in n

q if this is useful. We also use the terms a
function from q to q and a boolean function in n variables
over q (i.e., a function from n

q to q) interchangeably.
— Let f�ig be a self-dual basis of q over q . Let x = x1�1 +

� � � + xn�
n 2 q ; xi 2 q and y = y1�1 + � � � + yn�

n 2
q ; yi 2 q . Then x � y = Trn1 (xy) where x = (x1; . . . ; xn)

and y = (y1; . . . ; yn) and x � y = n

i
xiyi, the dot product of

x and y.
— A function f(x)with f(0) = 0 from q to q is balanced if each

element in q occurs in ff(x)jx 2 q g exactly qn�1 times. Let
faig be a sequence over q of period qn�1, and g(x) be its trace
representation. Then, we say faig is balanced if g(x) � g(0) is
balanced.

— Two periodic sequences faig and fbig over q of period P are
said to be shift-equivalent if there exists some integer k (0 �
k < P ) such that bi = ai+k for all i. Otherwise, they are called
shift-distinct.

A. Three Types of Crosscorrelations

Let N = qn�1 and a = faig and b = fbig be two sequences over
q of period qn�1where q = pt where p is a prime. When t > 1 there

seems to be no single (universally accepted or applicable) consensus on
the correlation between a and b. At least three different notions have
been proposed [3], and we will use the following (see Question 16 in
Exercises for [3, Ch. 5]).

Let � be a primitive qth root of unity, i.e., there is some integer j
such that � = exp( ij2�

q
) where i =

p�1. Let f�0; �1; . . . ; �t�1g be
a basis of q over p. For x 2 q , we have

x =

t�1

i=0

xi�i; xi 2 p: (1)

We define

�(x) =

t�1

i=0

xip
i
; xi 2 p (2)
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which is a p-ary representation of an integer x in Zq . Then � gives a
one-to-one correspondence between the finite field q and the integer
residue ring q . If q = p, then �(x) = x. The crosscorrelation between
a and b is defined as, for � = 0; 1; . . .

Ca;b(�) =

N�1

i=0

�a �b ; q = p

N�1

i=0

��(a )��(b ); q = pt; t > 1:

(3)

From this definition, when q = pt for t > 1, we essentially obtain
correlation of sequences whose elements are taken from three different
alphabets.

1) The crosscorrelation between a = faig and b = fbig, where
ai; bi 2 q , i.e., the elements of the sequences a and b are
taken from the finite field q with q elements.

2) Let

ui = �(ai) 2 q; and vi = �(bi) 2 q; i = 0; 1; . . . :
(4)

Through the definition of the crosscorrelation of a and b, we
obtain a crosscorrelation of u = fuig and v = fvig which are
integer sequences over q . In other words, the crosscorrelation
between u and v is given by

Cu;v(�) =

N�1

i=0

�u �v ; � = 0; 1; . . . : (5)

3) Let s = fsig and t = ftig whose elements are defined as

si = �u = ��(a ) and ti = �v = ��(b ); i = 0; 1; . . . :
(6)

Thus s and t are sequences over the complex q-th roots of unity,
i.e., in the complex field . The crosscorrelation between s and
t is defined as

Cs;t(� ) =

N�1

i=0

si+� t
�

i ; � = 0; 1; . . . (7)

where x� means the conjugate of the complex number x.
The crosscorrelations of these three types of sequences are equal,

i.e., we have

Ca;b(�) = Cu;v(�) = Cs;t(�); � = 0; 1; . . . : (8)

Thus, if we derive the crosscorrelation between sequences over q ,
then at the same time we obtain the crosscorrelation between sequences
over q and the crosscorrelation between sequences over the complex
field, defined by (4) and (6), respectively. Therefore, all the results on
correlation derived in this correspondence for sequences over q are
valid for the other two classes of sequences.

In the rest of the correspondence, for simplicity, we will omit the
map � in correlation calculation, but it should be understood that if
q = pt; t > 1, x in �x; x 2 q represents the p-ary representation of
x, i.e., �(x) defined by (2).

We may write the correlation function Ca;b(�) in terms of exponen-
tial sums as follows, which can simplify proofs for correlation calcula-
tions in many cases.

Ca;b(�) + 1 =
x2

�a(�x)�b(x); q = p

x2

��(a(�x))��(b(x)); q = pt; t > 1
(9)

where � = �� 2 �
q , a(x) and b(x) are the trace representations of a

and b respectively. (Note. Both a(x) and b(x) are functions from q

to q .) The (9), in fact, is the definition of the crosscorrelation between

two functions a(x) and b(x) [3]. In other words, the crosscorrelation
between a(x) and b(x), denoted by Ca;b(�), is defined as

Ca;b(�) =
x2

�a(�x)�b(x); q = p

x2

��(a(�x))��(b(x)); q = pt; t > 1:
(10)

Thus, the relationship of the correlation between the sequences a and
b to the correlation between the functions a(x) and b(x) is given by

Ca;b(�) + 1 = Ca;b(�); � = �� 2 �

q : (11)

We will use the correlation of the function version for derivations in
the rest of this correspondence.

B. LCZ and Almost LCZ Sequences

We now review the concept of sequences with low corre-
lation zone (LCZ) and define “almost” LCZ sequences. Let
sj = (sj;0; sj;1; . . . ; sj;N�1);0 � j < r, be r shift-distinct se-
quences over q with period N . Let S = fs0; s1; . . . ; sr�1g. If for
any two sequences in S, say a and b, Ca;b(�), the correlation function
between a and b defined by (3), satisfies jCa;b(�)j � �, then S is
said to be an (N; r; �) signal set, and � is referred to as the maximum
correlation of S. If we put a condition on the range of � , i.e., for a fixed
nonnegative number d, if for any two sequences a and b in S, we have

jCa;b(�)j � �; 8 j� j < d (12)

thenS is referred to as an (N; r; �; d) low correlation zone (LCZ) signal
set. For the CDMA communication systems working in the quasisyn-
chronous mode, it is well-known that the crosscorrelation function of
spreading codes around the origin determines the performance [12]. If
the crosscorrelation of any two sequences in S satisfies the following
conditions:

jCa;b(�)j � �; 8 0 < j� j < d (13)

we callS an (N; r; �; d) almost low correlation zone (ALCZ) signal set.
It is an LCZ signal set except possibly for the higher crosscorrelation
value exactly at the origin, i.e., at � = 0.

According to this definition, if d = dN=2e, then a (N; r; �; d) LCZ
signal set becomes a (N; r; �) signal set. Recently, there have been
several constructions of LCZ signal sets with parameters (N; r; 1; d)
where d = q �1

q �1
, where mjn, and the values of r depend on m [12],

[13], [8], [11], [14].
It is quite interesting to observe that all such LCZ signal sets come

from a well-known fact which is presented in [3]. In the following two
sections, we present this relation and a construction that achieves the
upper bound on the size of the signal set. In the final section, we give
a few open problems and some concluding remarks.

II. CROSSCORRELATION OF SUBFIELD REDUCIBLE SEQUENCES

Definition 1: (Golomb and Gong, 2005 [3, Definition 8.3]) Let f(x)
be a function from q to q with f(0) = 0 and let


f (�) = f(f(x); f(�x)) j x 2 �

q g; 1 6= � 2 �

q : (14)

We say that f(x) satisfies the two-tuple balance property if f(x) sat-
isfies the following two conditions:

1) For � =2 q , each pair (0; 0) 6= (�; �) 2 2
q occurs qn�2 times in


f(�) and (0; 0) occurs qn�2 � 1 times in 
f (�).
2) For 1 6= � 2 �

q , there exists some 1 6= � 2 �
q such that

(0; 0) 6= (�; ��) occurs qn�1 times in 
f(�) for every � 2 �
q

and (0; 0) occurs qn�1 � 1 times in 
f(�).
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Definition 2: (Gong and Golomb, 2002 [4]) Let u = fuig be a se-
quence over q of period N = qn � 1 with trace representation u(x).
If there is m > 1, a proper factor of n, such that u(x) can be decom-
posed into a composition of h(x) and g(x) where h(x) is a function
from q to q , and g(x) a function from q to q , i.e.,

u(x) = g(x) � h(x) (15)

or in diagram form

q

# h(x)

q

# g(x)

q

then we say that u(x) oru is subfield reducible, (15) is called a subfield
factorization of u(x) or u. Otherwise, u(x) or u is said to be subfield
irreducible.

From this definition, we know thatm-sequences of period qn�1 are
subfield reducible if n is not a prime. Note that the subfield reducibility
or irreducibility of functions or sequences is meaningful only for n
composite.

In [3], it is shown that the autocorrelation of a subfield reducible se-
quence given by a(x) = f(x)�h(x)whereh(x) is a function from q

to q with the two-tuple balance property, and f(x) : q ! q is
balanced, is equal to�1 for all values of � 6� 0 (mod d) and the auto-
correlation of a(x) for � � 0 (mod d) is equal to the autocorrelation
of f(x) multiplied by a scalar factor. (Refer to [3, Theorem 8.1 and
Corollary 8.2] for details.) They also illustrated the effect of autocor-
relation of this type of subfield reducible sequences using an example
(in [3, Example 8.2]). In other words, there are only qm� 1 autocorre-
lation values at � ’s which are multiples of d which are undetermined.
Compared to those � ’s whose correlation values are equal to�1 (there
are qn�qm such � ’s), the number of undetermined values is relatively
quite small and these � values are far from the origin (i.e., from � = 0)
since they are multiples of d = q �1

q �1
. This result and its proof has

its origin rooted in calculating autocorrelation functions of GMW or
generalized GMW sequences, geometrical sequences by Klapper, Chan
and Goresky [10] and k-form sequences [9] in which h(x) is a trace
function Trn1 (x

k), a cascaded GMW function, or a k-form function.
There is a similar result for the crosscorrelation between two such sub-
field sequences (see [10]) and the proof also can be given in a similar
fashion to that for their autocorrelation functions. Unfortunately, these
results have not received sufficient publicity. We reproduce it here.

Recall that Q = qm, and n = lm, and let d = q �1
q �1

.

Theorem 1: Let h be a function from q to Q with the two-tuple
balance property, and f and g be any two functions from Q to q .
Let a and b be two sequences, not necessarily distinct, over q with
a(x) = f(x) � h(x) and b(x) = g(x) � h(x) as their trace represen-
tations, respectively. Let � = �� . Then Cf�h;g�h(�), the crosscorre-
lation between a and b, is given by

Ca;b(�)+1=Cf�h;g�h(�)

=

Ql�2

x2

�f(x)

y2

��g(y)
� 6�0 (mod d)

or � =2 Q

Ql�1Cf;g(�)
��0 (mod d)

or � 2 Q:

In particular, if one of the functions f or g is balanced, then

Ca;b(�) = Cf�h;g�h(�)� 1 = �1; 8� 6� 0 (mod d):

Proof: Note first that � 6= 0. For � 6= 1,

Cf�h;g�h(�) =
x2

�f(h(�x))�g(h(x)): (16)

Assume � =2 Q. In this case, substituting Condition 1 of Definition 1
into (16), we have

Cf�h;g�h(�) =Ql�2

�;�2

�f(�)�g(�)

=Ql�2

�2

�f(�)

�2

��g(�)

=) Cf�h;g�h(�) = 0 (if one of f or g is balanced):

Now, assume 0 6= � 2 Q. Substituting Condition 2 of Definition 1
into (16), we have, since 1 6= � 2 �

Q

Cf�h;g�h(�) =Ql�1

�2

�f(��)�g(�)

=Ql�1Cf;g(�):

For � 2 �

Q, since � = �d is a primitive element in Q, we may write
� = �j = �jd =) � = jd which completes the proof.

Thus, for two subfield reducible sequences, given by f �h and g �h
where h satisfies the two-tuple balance property and one of f and g is
balanced, their cross-correlation function takes the value�1 for all � ’s
which are not multiples of d; i.e., there are qn � qm values of � such
that Ca;b(�) = Cf�h;g�h(�)�1 = �1. There are only qm�1 values
of � remaining at which the cross-correlation value is undetermined.
These undetermined values depend on the cross correlation between f
and g, i.e., Cf�h;g�h(�

id) = qn�mCf;g(�
i), i = 0; 1; . . . ; qm � 2,

where � = �d.
Observe that the condition that makesCf�h;g�h(�) = 0 for so many

values of � is rather weak, and it easily produces an almost LCZ signal
set of gigantic size. Before we discuss the size, we need the following
lemma whose proof is immediate from the balance property.

Lemma 1: Let U� be a set consisting of all shift-distinct sequences
over q with period qm � 1 and the balanced property. Let F� be a
set consisting of functions from Fq to Fq with the balance property,
which map zero to zero. Then the sequential evaluation of any function
in F� is a sequence in U�. Furthermore

jU�j =
jF�j

qm � 1
:

Applying this lemma, we have the following result.

Theorem 2: Let �0 be the set consisting of all subfield reducible se-
quences with the trace representations f �h where h is a fixed function
from q to q with the two-tuple balance property and the evalua-
tion of f ’s runs through U�. Then we have the following.

1) Any two sequences in �0 are shift-distinct.
2) For any two sequences in �0, say a and b

Ca;b(�) = �1; 8 � 6� 0 (mod d):

Moreover, �0 is a (N; r; 1; d) almost LCZ signal set where
j�0j = r = jU�j.
Proof: Let f �h and g �h be the trace representations of a and b,

respectively. Then a and b are shift-distinct if and only if the evalua-
tions of f and g are shift-distinct (see details in [3, Sec. 8.1]). Since any
two sequences in U� are shift-distinct, then a and b are shift-distinct.
The crosscorrelation property directly follows from Theorem 1.
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Here are a few remarks about Theorem 2.

Remark 1: The size r of �0 is huge. Its lower bound is given by

r = jU�j �
(q � 1)qq

qm � 1
: (17)

Note that f(x) = cx1 + f1(x2; . . . ; xm); c 2
�

q , is a balanced func-
tion where f1(x2; . . . ; xm) is an arbitrary function of m�1 variables.
There are q�1 ways to pick c and qq ways to pick the function f1.
Thus the size of F� is greater than the product of (q� 1) and qq .
By removing shift-equivalent sequences, we have (17).

Remark 2: For q = pt where t > 1, let �1 and �2 be the sets con-
sisting of the sequences over q transformed from �0 by (4) and the
sequences over the complex field transformed from �0 by (6), respec-
tively. Then both �1 and �2 are (N; r; 1; d) almost LCZ signal sets.

Remark 3: A function h(x) : q ! q is k-form, if, for any
� 2 �

q and x 2 q , h(�x) = �kh(x), gcd(k; qn � 1) = 1.
A function h(x) : q ! q has the difference balance property,
if, for any � 2 q , � 6= 1, h(x) � h(�x) is balanced. In 2002 [6],
Gong and Song established essentially Fact 1 given below. The known
results on LCZ sequences come from the general construction for �0,
in which eitherh is a monomial trace term [12], [13] for q = 2 or q = p,
or h(x) satisfies both k-form and the difference balance property [8]
for q = 22. In all these research, the results of Theorem 1 have been
established repeatedly for different subsets of U� where these subsets
have their respective sizes smaller than qm. Note that the results of
Theorem 1 also can be easily established via exponential sums together
with Fact 1. Fact 1 also implies that, if h(x) is k-form and difference
balance property, then it has the two-tuple balance property.

Fact 1: If h(x) is k-form then it has cyclic array structure. If, in
addition, h(x) has the difference balance property, then it has the two-
tuple balance property.

Note that if Cf�h;g�h(0) = 0 or equivalently Cf;g(0) = 0, then
�0 becomes a (N; r0; 1; d) LCZ signal set where r0 is the size of the
subset, say K , of U� which satisfies that the term-by-term difference
of two shift-distinct sequences is still a balanced sequence. We now
concentrate on the subset K of U� in the following section.

III. A CONSTRUCTION OF K

In this section, we provide an important observation on the achiev-
able upper bound for the size of K , a set of balanced sequences in
which the term-by-term difference of any two distinct members is also
balanced. For this, we give a connection between the existence of K
and the Hadamard matrices as a fact in the following, whose proof can
be easily established by some elementary method in linear algebra. We
also give a construction for K whose size achieves this upper bound.

Let faig be a sequence over q of period P . We say that faig is
balanced if

jNx �Nyj � 1; for any x; y 2 q

where

Nx = jfijai = x; 0 � i < Pgj; x 2 q:

Note that this definition is a general case of the balance property defined
earlier for P = qn � 1.

Fact 2: Suppose K is a collection of balanced sequences over q of
period P (here we do not care whether or not they are shift distinct, and
we do not have to restrict the value of P ) such that the term-by-term
difference of any two sequences in K is again balanced. Then the size
jKj of K (the number of sequences in K) cannot exceed P .

When the period is qm � 1, note that the above implies that the size
jKj of K is upper bounded by qm � 1.

In this following, we show the relation of the set K and a q-ary
Hadamard matrix. Recall that q is a power of a prime.

Let H = (hij)v�v where hij = !s ; sij 2 q and ! is a primitive
qth root of unity. Here, the map in (2) should be used when q = pt for a
prime p and t > 1. H is said to be a Hadamard matrix if HH� = vIv
where H� = (h�ij) where x� is the complex conjugate of x and Iv is
the v � v identity matrix. In other words, H is a Hadamard matrix if
the Hermitian inner product of any two row vectors of H is equal to
zero, i.e., any two row vectors of H are orthogonal.

Note that H can always be transformed into a special form in which
the first row and the first column are the all one’s vectors by applying
some elementary “Hadamard-preserving” operations [1], [3]. There-
fore, without loss of generality, we may assume that H is in this form.
Let v = qm. Let H� denote the matrix resulting from H by deleting
the first column and the first row. We say that H� is the reduced form
of H . From the definition of the Hadamard matrices and Theorem 2,
the following result is immediate.

Theorem 3: Use the notations above. Let H = (hij) be a qm � qm

matrix over q , and let gj(�i) = sij where hij = !s ; sij 2 q

and ! is a primitive element of q . Let K be a set consisting of the
sequences whose trace representations are gj ’s, 1 � j < qm. Then K
produces an LCZ signal set with parameters (N; r0; 1; d) if and only
if H is a Hadamard matrix. Furthermore, in such a case, r0 = qm � 1
if and only if any two rows of H� are shift distinct when they are
considered as sequences. Here, H� is the reduced form in size (qm �
1) � (qm � 1) assuming H is in the form in which the first row and
the first column are the all one’s vectors.

Therefore, the classification of all the LCZ signal sets with parame-
ters (N; qm�1; 1; d) constructed by the subfield decomposition (The-
orem 2) is equivalent to the classification of all the qm�qm Hadamard
matrices in which the row vectors in the reduced forms are all shift dis-
tinct. We may call this a Hadamard matrix of a completely noncyclic
(or super noncyclic) type. For these K’s, the size of K achieves the
maximum possible value (Fact 2).

Note that for the known constructions, jKj < qm�1 for q = p [13],
jKj = qm=2 for q = 22 [8]. While this manuscript was in preparation,
two more results were presented at some conferences [11], [14]. In
these results, the size of the set K was attained to be qm�1 where q =
p, and the relation of K and a completely noncyclic type Hadamard
matrix was observed. These are the results that again proves Theorem 1.

In the following, we give another construction for K in which the
size jKj achieves the upper bound qm � 1. For the construction given
below, the case of q = 2 has a much simpler proof. However, the
proof for q > 2 cannot be obtained from the case of q = 2 by simply
replacing 2 by q. So, we will directly proceed it for a general q, a power
of a prime (which is either 2 or an odd prime p).

A Construction for K:

STEP 1: We write the elements of q as a pair (x; y) where x 2 q

and y 2 q where we set r = m � 1.

STEP 2: Choose ui(x); 0 � i < qr � 1, qr � 1 functions from q to
q which satisfy the following three conditions.

(a) For any x 2 q , ui(x) 6= 0, 0 � i < qr � 1.

(b) For any fixed x 2 q , fu0(x); u1(x); . . . ; uq �2(x)g is a
permutation of �

q , i.e.,
fu0(x); u1(x); . . . ; uq �2(x)g =

�

q :

(c) uj(x) is not a scalar multiple of ui(x) for i 6= j, i.e., there is no
a 2 q such that uj(x) = aui(x); x 2 q when i 6= j.

STEP 3: Set �(y) = yv with gcd(v; qr � 1) = 1, which is a
permutation of q , and choose t(x) any permutation of q with
t(0) 6= 0 for q > 2, and choose t(x) = x for q = 2.
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STEP 4: Construct a set of functions from q to q as follows.

S = fui(x) � �(y) + at(x) j 0 � i < q
r � 1;

a 2 qg [ fbt(x) j b 2
�

qg:

We now let K be the set consisting of sequences which are evaluations
of functions in S.

Theorem 4: Let K be the set constructed according to the steps
described above. Then K produces a (N; qm � 1; 1; d) LCZ signal
set using the construction given in Theorem 2.

We may feature the above three conditions for ui(x) using the fol-
lowing array. Let q = f�0 = 0; �1 = 1; �2; . . . ; �q�1g, and
let H = (hij) be a (qr � 1) � q array whose entries are given by
uij = ui(�j); 0 � i < qr � 1; 0 � j < q, i.e.

U =

u0(�0) u0(�1) . . . u0(�q�1)

u1(�0) u1(�1) . . . u1(�q�1)
...
uq �2(�0) uq �2(�1) . . . uq �2(�q�1)

:

The three conditions on ui(x) are as follows: (a) uij 6= 0; 0 � i <

qr � 1; 0 � j < q; (b) each column of U is a permutation of elements
of �

q ; and (c) each row is not a scalar multiple of another row.
For the proof of Theorem 4, we need a series of lemmas.

Lemma 2: We write the elements of q as a pair (x; y) where
x 2 s

q and y 2 q where m = r + s. Let h(x) be a function from
s
q to q with h(x) 6= 0 for all x 2 s

q , �(y) is a permutation of
r
q , and t(x) is an arbitrary function from s

q to q . Then f(x; y) =
h(x) � �(y) + t(x) is a balanced function from q to q , where
h(x) � �(y) is the dot product of r-tuple vectors.

Proof: Since �(y) is a permutation of r
q , for a fixed nonzero

element a 2 r
q , any element in q occurs exactly qr�1 times in the set

consisting of fa � �(y) j y 2 r
qg. Note that h(x) 6= 0 for all x 2 s

q .
Therefore, for any c 2 Fq , f(x; y) = h(x) � �(y) + t(x) = c has
qs+r�1 = qm�1 solutions of (x; y) in m

q where x 2 s
q and y 2 r

q .
Thus, f(x; y) is balanced.

Lemma 3: With the notation in Theorem 4, for q > 2, there exist
some a; � 2 �

q such that

t(�x) = at(x); 8x 2 q

if and only if a = 1 and � = 1.
Proof: Let t(x) = q�2

i=0
tix

i; ti 2 q (note the fact that t(x) is
a permutation of q implies that tq�1 = 0). Thus

t(�x) = at(x) =)

q�2

i=0

ti�
i
x
i = a

q�2

i=0

tix
i
: (18)

Hence (18) is true if and only if ti�i = ati for all i with 0 � i � q�2.
For those i’s such that ti 6= 0, we have �i = a. This yields

t(� � 1) = at(1)� at0 + t0: (19)

On the other hand, we have

t(� � 1) = at(1): (20)

Substituting it into (19), we have t0 � at0 = 0. Since t0 6= 0 by the
assumption, this derives that a = 1. Then we have t(�) = t(1). Since
t(x) is a permutation, � = 1 which completes the proof.

Lemma 4: Let u(x) be a function from q to q , �(y) be an ar-
bitrary permutation of q , and h(x) be a function of q . Then u(x) �

�(y) = h(x) for all x 2 q and y 2 q if and only if both u(x) and
h(x) are zero functions, i.e., u(x) = 0 and h(x) = 0 for all x 2 q .

Proof: If u(x) is not a zero function, then there exists some x0 2
q such that u(x0) 6= 0. Since �(y) is a permutation of q , each

element of q occurs exactly qr�1 times in fu(x0) ��(y) j y 2 q g.
Thus this set is not equal to fh(x0)gwhich consists of only one element
in q .

Proof of Theorem 4: We need to show that the sequences in K

satisfies the following three conditions:
1) Each sequence in K is balanced with period qm � 1.
2) The term-by-term difference of any two of sequences in K is

balanced.
3) Any two sequences in K are shift distinct.
Note that t(x) is a permutation of q , and hence, is balanced. Thus,

according to Lemma 2, the condition (a) for ui(x) shows that each
function in S is balanced. For two functions f(x; y) and g(x; y) in S,
we have the following three cases to consider:

f(x; y) g(x; y)

(i) ui(x) � �(y) + at(x); uj(x) � �(y) + bt(x);

a 2 q b 2 q

(ii) ui(x) � �(y) + at(x) bt(x)

(iii) at(x) bt(x)

:

For cases (ii) and (iii), it is obvious that f(x; y)� g(x; y) is balanced.
For case (i), we have f(x; y) � g(x; y) = [ui(x) � uj(x)] � �(y) +
(a� b)t(x), according to condition (b) of the ui’s, ui(x)�uj(x) 6= 0
for all x 2 q . Again using Lemma 2, f(x; y) � g(x; y) is balanced.
Thus the difference of any two functions in S is balanced.

If two sequences given by f(x; y) and g(x; y) are shift equivalent,
then we have

g(x; y) = f(�x; �y); x; � 2 q; y; � 2 q : (21)

From Lemmas 3 and 4, if f(x; y) and g(x; y) belong to the cases (ii)
and (iii), then they are shift distinct. So, we only need to consider case
(i) for these two functions.

We use the self-dual basis in q , then we can write ui(x) ��(y) =
Trr1(ui(x)y

v) where �(y) = yv . Thus, we have

f(�x; �y) =ui(�x) � �(�y) + at(�x)

=Tr
r
1(ui(�x)�

v
y
v) + at(�x)

g(x; y) =Tr
r
1(uj(�x)y

v) + bt(x):

Hence, g(x; y) = f(�x; �y) implies Trr1 ([ui(�x)�
v � uj(x)]y

v) =
bt(x)�at(�x). Again using the interchange of the dot product and the
trace representation, the above identity yields

u(x) � yv = h(x)

where u(x) = ui(�x)�
v � uj(x) and h(x) = bt(x) � at(�x).

Applying Lemma 4, we obtain that u(x) = 0 and h(x) = 0. For
h(x) = 0, we have bt(x) = at(�x). According to Lemma 3, it fol-
lows that a = b and � = 1. Substituting � = 1 into u(x) = 0, we
have uj(x) = �vui(x). According to the condition (c) of the con-
struction of ui(x)’s, it follows that i = j and � = 1. Therefore
f(x; y) = g(x; y). Thus, any two sequences in K are shift-distinct,
and jKj = (qr � 1)q+ (q � 1) = qm � 1.

From Theorems 3 and 4, we have the following.

Corollary 1: The construction for K above also constructs a com-
pletely noncyclic Hadamard matrix over q of size qm � qm. Total
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numberM(q;m) of such Hadamard matrices from the above construc-
tion is given by

M(q;m)�
q�1
i=0 [(q

r�1)!�(qi�1)]

q!
�(qr�1)[q!�(q�1)!]

where r = m � 1 and �(n) is the Eulor’s-�-function that counts the
number of integers from 1 to n which are relatively prime to n.

Proof: For each ui(x) there are (qr � 1)! choices for an image.
The lower bound is obtained by taking out all the nontrivial linear com-
binations of the uj(x)’s, j = 0; 1; . . . ; i � 1, when ui(x) is to be se-
lected for each i = 0; 1; . . . ; q � 1.

From Theorem 2, the construction achieves the upper bound on the
size of the LCZ signal set. We list the functions in S as S = fgi j 0 �
i < qm � 1g. Using Theorem 4, the matrix H = (hi;j) whose entries
are given by hi+1;j+1 = !g (� ); 0 � i; j < qm � 1, and h0;j =
1; 0 � j < qm and hi;0 = 1; 0 � i < qm, is a completely noncyclic
Hadamard matrix, i.e., any two row vectors in H� are shift distinct.

Example 1: Let m = 4, q = 2, 2 be defined by �3 + �+ 1 = 0
and 2 be defined by �4 + � + 1 = 0. We choose ui(x), a function
from 2 to 2 , given as follows, which satisfy the three conditions of
ui(x), 0 � i < 7.

i ui(0) ui(1)

0 001 010

1 010 011

2 100 111

3 011 001

4 110 100

5 111 110

6 101 101

Set �(y) = y3. We denote the elements of 2 as �i and represent
�i = x3�

3 + x2�
2 + x1� + x0; xi 2 2 as a pair (x; y) where

x = x3 and y = x2�
2+x1�+x0. The setK consists of fifteen binary

sequences of period 15, in which the first seven sequences, denoted by
si; i = 0; . . . ; 6, are given by f(x; y) = ui(x) � �(y), which are
listed in Table I. The second group of seven sequences are given by
ui(x) � y

3 + x which can be obtained from si by the complement bits
which correspond to x = 1, and the last one is given by x which is
fTr41(�

i)gi�0, i.e., 000100110101111. This gives an LCZ signal set

with parameters 24k � 1; 15; 1; 2 �1
15

for any positive integer k >
1. The resulting 16 � 16 Hadamard matrix of completely noncyclic
type is shown in Fig. 1. Note that the reduced form of size 15 � 15
without the first row and first column is completely noncyclic.

IV. CONCLUSION AND OPEN PROBLEMS

We use two known results in the recent book by Golomb and Gong
[3]:

a) Definition of correlation for sequences over q where
q = pt; t > 1 ([3, Ch. 5]); and

b) Autocorrelation of a subfield reducible sequence over q with
trace representation f � h where h(x) is a function from q to
q with the two-tuple balance property where m is a proper

factor of n, f(x) is a balanced function from q to q whose
autocorrelation functions has the value �1 everywhere except
for � = jd; j = 0; 1; . . . ; qm � 2 where d = q �1

q �1
=

qm(l�1) + qm(l�2) + � � � + qm + 1 (where n = lm), and for
� = jd, the autocorrelation of the sequence at jd is equal to the
autocorrelation of the sequence given by f at j; j = 0; 1; . . . (see
[3, Theorem 8.2 and Corollary 8.3]).

Consequently, we obtain a huge set of subfield reducible sequences
over q of period qn�1 with correlation values�1 everywhere except

TABLE I
SEVEN SEQUENCES GIVEN BY u (x) � �(y)

Fig. 1. A 16 by 16 Hadamard matrix whose reduced form of size 15 by 15 is
completely noncyclic. See Example 1.

for the values at � = jd; 0 � j < qm � 1 where m is a proper
factor of n. The number of sequences in this set is equal to the number
of balanced functions from q to q divided by qm � 1. From this
result, we constructed the signal set �0 with low correlation zone, i.e.,
the crosscorrelation of any two sequences or autocorrelation of any
sequence in this set is equal to �1 for the absolute value of � 6= 0
and less than d. The size of �0 is equal to the number of shift-distinct
balanced sequences over q with period qm�1. From �0, we derived
the other two signal sets with the same parameters as those of �0, but
one consists of sequences over q and the other consists of sequences
over the complex qth roots of unity where q = pt for t > 1.

If we require the crosscorrelation of any two sequences in�0 is equal
to �1 at � = 0, we showed that from the subfield factorization con-
struction, the size of any LCZ signal set cannot exceed qm � 1, the
relationship between these functions and Hadamard matrices, and we
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also provided a construction for this type of signal sets in which the
size achieves the maximum for any q.

For research on finding some new constructions of subfield reducible
sequences over q with two-level autocorrelation, or with low correla-
tion and/or with LCZ, it would be worthwhile to put some effort into
the following unsolved problems.

Construction of h(x) in the Set �0: Any sequence in �0 is given
by f � h(x) where f(x) : q ! q with the balanced property and
h(x) : q ! q with either a) the two-tuple balance property, or b)
with k-form and the difference balance property. The other construc-
tion for h(x) using f � h(x) produces a sequence with an interleaved
structure (see [3] for details).

There are only two known constructions for h(x) being either two-
tuple balanced or being k-form with the difference balance property for
q which is a power of 2.

i) h(x) is a single trace term, i.e., h(x) = Trnm(x
k), which gives

m-sequences over q .
ii) h(x) is a cascaded GMW function of length s, which produces

a cascaded GMW sequence over q .
Open Question 1: Is the converse of Fact 1 true? In other words,

is the two-tuple balance property on a function h(x) : q ! q

equivalent to the condition of both k-form and the difference balance
property of the function h(x) for q which is a power of any prime?

Up to now, neither two-tuple balanced functions nor k-form func-
tions with the difference balance property have been found which do
not fall into one of the above two cases, i) and ii), for q which is a power
of 2.

Open Question 2: For each such h(x), we have a set�0, which is an
almost low correlation zone signal set with parameters (qn�1; r; 1; d)
where r is the number of shift-distinct balanced sequences over q with
period qm � 1, and d = q �1

q �1
. Thus the most interesting realizations

for �0 are those in which the evaluations of the h(x)’s are neither
m-sequences nor (cascaded) GMW sequences. In other words, does
there exist a function h(x) : q ! q whose evaluation is neither
an m-sequence nor a (cascaded) GMW sequence but which has the
two-tuple balance property (or, sufficiently, which is k-form with the
difference balance property) for q which is equal to 2 or a power of 2?
For q a power of an odd prime, Kim et al. showed (see [7, Theorem 5])
that the HG functions are 1-form with the difference-balance property.
This is another type of h(x) with this property, in addition to i) and ii)
mentioned above.

Open Question 3: From Theorems 3 and 4, we found that the set K
of maximum size is in the one-to-one correspondence with a Hadamard
matrix in which any two rows are shift-distinct. These Hadamard ma-
trices are not just “noncyclic” type since no two rows in the reduced
form are shift-equivalent. We may call this type “super noncyclic” or
“completely noncyclic.” Classification of all the completely noncyclic
type Hadamard matrices would be an interesting future work.
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A New Family of Ternary Almost Perfect
Nonlinear Mappings

Geir Jarle Ness and Tor Helleseth, Fellow, IEEE

Abstract—A mapping f(x) from GF (p ) to GF (p ) is differentially
k-uniform if k is the maximum number of solutions x 2 GF (p ) of
f(x + a) � f(x) = b, where a; b 2 GF (p ) and a 6= 0. A 2-uniform
mapping is called almost perfect nonlinear (APN). This correspondence
describes new families of ternary APN mappings over GF (3 ), n � 3 odd,
of the form f(x) = ux + x where d = � 1 and d = 3 � 2.

Index Terms—Almost perfect nonlinear (APN), ternary mappings.

I. INTRODUCTION

Let GF (pn) be the finite field with pn elements and let GF (pn)�

denote the set of nonzero elements in the field. Let f(x) be a mapping
f : GF (pn) ! GF (pn). Let N(a; b) denote the number of solutions
x 2 GF (pn) of f(x+ a)� f(x) = b where a; b 2 GF (pn) and let

�f = maxfN(a; b) j a; b 2 GF (pn); a 6= 0g:

The value �f is called the differential uniformity of the mapping f .
A mapping is said to be differentially k� uniform if �f = k. This is
of interest in cryptography since differential and linear cryptanalysis
exploit weaknesses of the uniformity of functions of the form f(x) =
xd over GF (pn) where p is a prime. For applications in cryptography
one would like to find functions where �f is small. When p = 2, the
solutions come in pairs, therefore, �f = 2 is the smallest possible
value. When �f = 2, we call the functions almost perfect nonlinear
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