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Collision-Free Interleaver Composed of a Latin Square for
Parallel-Architecture Turbo Codes

Dae-Son Kim, Hyun-Young Oh, and Hong-Yeop Song, Member, IEEE

Abstract— In parallel-architecture turbo codes, the constituent
interleavers must avoid memory collision. This paper proposes
a collision-free interleaver structure composed of a Latin square
(LS) and pre-designed interleavers. Our proposed interleavers
can be easily optimized for various information block sizes and
for various degrees of parallelism. Their performances were
evaluated by computer simulation.

Index Terms— Turbo codes, interleaver, parallel architecture,
collision-free, Latin square.

I. INTRODUCTION

THESE days, parallel-architecture turbo codes is one of
the hottest topics in the field of channel coding [1]-[5].

In the parallel architecture, a block is divided into several
sub-blocks having independent processors, and those sub-
blocks can be encoded and decoded simultaneously. No tail
bits are required with circular tail-biting encoding. In parallel
decoding of turbo codes, each processor is a soft-in soft-out
(SISO) module. If more than one processor tries to access
the same memory bank to read data symbols according to
the constituent interleaver, a collision occurs, and so access
cannot be accomplished on time and, in turn, additional delays
are incurred [1]. For the purpose of avoiding collisions, many
collision free interleavers have been proposed [2]-[4].

The collision-free interleavers proposed in [2], [3] and
[4] entail a complex optimizing process. In communication
systems, various block sizes generally are required to be
supported, and the constituent turbo code interleavers need to
be defined for all possible block sizes. This paper proposes a
collision-free interleaver structure that can be optimized easily
for various information block sizes.

II. PARTIAL LITERATURE REVIEWS

In this section, we review the three collision-free inter-
leavers proposed in [2], [3], and [4].

A 2D interleaver constituted of two permutations, temporal
and spatial permutation, was proposed in [2]. The temporal
permutation permutes data symbols in each sub-block, and the
spatial permutation permutes data symbols among the sub-
blocks. Let the number of data symbols in a block be K,
the number of sub-blocks or the degree of parallelism be L,
and the number of symbols in each sub-block be M , where
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M = K/L. The symbol index k ∈ {0, 1, · · · ,K − 1} can be
represented by the 2D array structure with temporal index t
and spatial index s, where k = s·M + t, s ∈ {0, 1, · · · , L −
1} and t ∈ {0, 1, · · · ,M − 1}. The temporal permutation is
denoted by ΠT (t, s) and the spatial permutation by ΠS(t, s).
Then, the collision-free 2D interleaver is defined as

Π(k) = Π(t, s) = ΠS(t, s)·M + ΠT (t, s). (1)

To avoid collisions in parallel-architecture turbo codes,
ΠS(t, s) must satisfy the condition that for every t ∈
{0, 1, · · · ,M − 1}, ΠS(t, s)s=0,1,··· ,L−1 is in a one-to-one
correspondence with sub-blocks 0, 1, · · · , L − 1.

The almost regular permutation (ARP) is based on the
relative prime interleaver [3]. Periodic fluctuation patterns are
added according to

Π(k)=(P ·k + L·(α(k)·P + β(k)) + γ) (mod K), (2)

where P is relatively prime with K, L is the degree of
parallelism, α(k) and β(k) are the positive integer sequences
of period L for 0 ≤ k ≤ K − 1, and γ is an initial offset.
Generally α(k) is 0 or 1 and β(k) is 0 to 8. The ARP has
been used with turbo codes in the standards, including IEEE
802.16, DVB-RCS, and DVB-RCT.

The quadratic permutation polynomial (QPP) interleaver is
based on an algebraic construction [4]. Takeshita proved that
the QPP interleaver is maximum-collision-free, which means
that an interleaver is collision-free for all sub-block sizes M
dividing the block length K. The QPP interleaver is defined
as

Π(k)=f1 · k+f2 · k2(mod K), (3)

where f1 and f2 are non-negative integers [4].

III. PROPOSED INTERLEAVER

We define a collision-free interleaver by rewriting the spatial
permutation in matrix form as

Π(k) = Π(s·M + t) = uts ·M + ΠT (t). (4)

Here, the M by L matrix U = {uts} indicates the mapping
among the sub-blocks. To avoid collisions, each row vector of
U must be the permutation of sub-blocks, 0, 1, · · · , L−1. We
use a pre-structured interleaver as the temporal permutation
ΠT (t). The optimizing process determines the mapping matrix
U, that is, finds M permutations of {0, 1, · · · , L − 1}.

Spreading the patterns of the symbols in the same sub-
block before and after permutations, affects the performance.
If two symbols in the same sub-block remain in the same
sub-block after permutations, those symbols can form a cycle
making a low-weight codeword or restricting the propagation
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Fig. 1. The comparison of two-tuple pattern distribution.

of messages in the iterative decoding process. Thus, we must
permute symbols in the same sub-block to different sub-blocks
as much as possible. The L by L LS, uL, is the L by L square
matrix over an alphabet of size L, where every row and every
column are the permutation of L symbols [7]. We define the
U matrix according to the form of the columnwise repetition
of an L by L LS. We call the uL-structured U matrix the
Latin square interleaver, which satisfies the requirement that
the distribution of sub-block indices in each column vector is
rendered uniform by the repeating feature.

For short- or medium-size blocks, generally, parallelism of
4 degrees can be considered. To reduce optimizing complexity,
we simply consider the reduced LS form, that is, the first row
of LS fixed by (0, 1, 2, 3) [7]. We need only to investigate 24
cases, not the 576 cases corresponding to all of the possible
cases of 4 by 4 LS. Furthermore, we can reduce this number
further by selecting only the good cases.

Each column vector of a matrix implies the sub-block
permutation pattern of one decoding block, and the distribution
of the patterns in each column vector directly influences the
performance. So, we consider the criterion that the distribution
of consecutive two-tuple patterns of the column vector of U
is observed, for example (0, y) along (circular) columns of u4

where y ∈ {1, 2, 3}. Figure 1(a) shows (0, 2), (0, 3) once and
(0, 1) twice, but Fig. 1(b) shows only the patterns (0, 1) and
(0, 3) twice. Therefore, the pattern in Fig. 1(a) is expected to
give a better performance than in Fig. 1(b), since it is closer
to the uniform distribution than is the other.

According to this criterion, we can divide 24 cases into
2 groups, good and bad, where each group has 12 cases.
A comparison of the performances of these two groups is
illustrated in Fig. 2. We use 3GPP interleavers of size 160
as the temporal permutation. The simulation environment is
3GPP standard turbo codes of information block size 640 with
4 parallelisms. The constituent convolutional codes are given
by the generator matrix [1, (1+D+D3)/(1+D2 +D3)]. The
code rate is 1/3. The decoding algorithm is max log-MAP and
the maximum iteration number is 8 with the Genie stopping
rule, that is, the iterations are stopped when there are no errors
in decoded information bits. The frame error rate (FER) curves
of the good group and the bad group are clearly distinguished
by the curve of the 3GPP interleaver of size 640 in Fig. 2.

For medium or long block length, parallelism of more than
4 degrees can be considered, for example 8 or 12. But there
are at least 2.3 · 1010 cases of 8 by 8 reduced LS [6]. So, we
cannot investigate all of the cases for optimization. Instead,
we will extend l by l LS to L by L LS where L = n · l,
n ∈ {2, 3, 4, · · · }. The extended L by L LS is Eq. (5).
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Fig. 2. Comparison of good-gruop and bad-group FER performances.
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, (5)

where (ul)(n) = ul·n, ai = (ai1, ai2, · · · , ail), a(k)
i =

(a(k)
i1 , a

(k)
i2 , · · · , a

(k)
il ), and a

(k)
i,j = ai,j +l·k. The uL-structured

U is the extended LS interleaver from ul. u8 can be constructed
from u4 and is also a reduced LS. We investigate only 24 cases
of u8 since there are 24 cases of 4 by 4 reduced LS.

If we do not concern the optimization process, we can
add the irregularity to the LS interleaver. We generate M
permutations randomly as the row vectors of U with the
constraint that σ by L matrix is a LS and σ ≤ L. We call
it by the semi-LS interleaver.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we compare the performance of the proposed
LS interleaver with the ARP and QPP interleavers. First, for
the 320 and 640 block sizes, parallelism of 4 degrees is
considered in comparing the LS interleaver with that of the
ARP. The ARP for 3GPP2 is proposed in [5]. The interleaver
parameters are:

• P=197, L=4, α=(0,0,1,1), β=(0,2,5,3), γ=3 for K=320,
• P=201, L=4, α=(0,0,1,1), β=(0,6,3,1), γ=3 for K=640.

In the proposed interleaver, we use the 3GPP interleaver of
sizes 80 and 160, respectively, as a temporal permutation. The
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TABLE I

COMPARISON OF COMPLEX OPTIMIZATION PROCESS

Int. type K = 320, L = 4 K = 640, L = 4 K = 1024, L = 8

LS 12 12 24

ARP 40960 81920 1073741824

QPP 15200 55360 261632

LS used by the LS interleavers is given as

u4,1 =

⎛
⎜⎜⎝

0 1 2 3
1 0 3 2
3 2 0 1
2 3 1 0

⎞
⎟⎟⎠ , u4,2 =

⎛
⎜⎜⎝

0 1 2 3
2 3 0 1
3 0 1 2
1 2 3 0

⎞
⎟⎟⎠ . (6)

Among the 12 candidates, u4,1 shows the best performance
for K = 320 and u4,2 for K = 640. The other simulation
environments are the same as those discussed in Section III.
Figure 3 shows the FER versus Eb/N0. The proposed LS
interleaver shows almost the same performance as the ARP
for K = 320. For K = 640, the ARP shows a slightly better
performance in the waterfall region but the error floor occurs
early. We cannot find a better semi-LS interleaver than the
best LS interleaver but they show almost same performance.
The proposed LS interleaver shows a good performance for
high signal to noise ration (SNR).

For the 1024 block sizes, parallelism of 8 degrees is
considered, and we compared the LS interleaver with the QPP
interleaver. We also use the 3GPP interleaver of size 128 as a
temporal permutation.

u8 =

⎛
⎜⎜⎝

0 1 2 3
1 2 3 0
3 0 1 2
2 3 0 1

⎞
⎟⎟⎠

(2)

. (7)

u8 shows the best performance among the 24 candidates. The
QPP interleaver parameters are f1 = 31 and f2 = 64. Figure
4 shows a similar result for the K = 640 case. The proposed
LS interleaver has a better performance for high SNR, almost
without error floor.

Table I shows a comparison of the complexity of the
optimization process for the different interleavers. In the ARP,
we suppose that α and γ are fixed, that only β(k) for k = 0
(mod L) is zero, and that the other β(k)s are from 1 to 8, so
there are |P | · 8L−1 cases to be investigated [3], where |P | is
the cardinality of P . In the QPP interleaver, there are |f1| · |f2|
cases [4]. Our proposed LS interleaver has a greatly reduced
complexity for optimization and shows good performance.
Note that one can use any pre-structured interleaver as a
temporal interleaver in the design of the proposed interleaver.

V. CONCLUSIONS

We propose a collision-free interleaver for parallel-
architecture turbo codes. Using a given pre-structured inter-
leaver, one can make interleavers of various block sizes by
defining a mapping matrix U. When LS structure is used as the
mapping matrix, the optimizing process is much less complex
than that for the ARP and QPP interleavers. In the case of 4
(resp. 8) parallelisms, only 12 (resp. 24) cases are investigated,
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Fig. 3. Comparison of LS and ARP interleavers.
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Fig. 4. Comparison of LS and QPP interleavers.

regardless of block size. Moreover, the proposed interleaver
shows almost the same performance as those of the ARP and
QPP interleavers.

REFERENCES

[1] A. Tarable, S. Benedetto, and G. Montorsi, “Mapping interleaving laws
to parallel turbo and LDPC decoder architectures,” IEEE Trans. Inform.
Theory, vol. 50, no. 9, pp. 2002–2009, Sept. 2004.

[2] D. Gnaedig, E. Boutillon, M. Jézéquel, V. Gaudet, and P. Gulak, “On
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