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Next, since B 5 9 for n _> 7 and HZ (A) < $, one obtains 

12 nHz(‘&) < 29 < 2=55 - 0 

The (103, 52, 19) QR  code satisfies the conditions of Lemma 4. 
Hence, it also is not a quasi-perfect code. 

Proof of Theorem 1: From Lemmas 1 and 2 one has 

for the binary QR  code ( n, 9, d) of length n = 8m - 1. It follows 
that d < n/5 - 1 for all n > 125. Hence, by Lemma 4 the conclusion 
of Theorem 1 follows. 0 

Thus, it has been shown that no binary quadratic residue code of 
length n = 8m - 1 is quasi-perfect. 

The results in Theorem 1 can be generalized to binary self-dual 
codes. Conway and Sloane [6] proved the following lemma for binary 
self-dual codes. 

Lemma 5: The minimal distance dmin of a binary self-dual code 
of length n satisfies 

for n > 72. 
By using Lemma 5 one can obtain the following corollary. 
Corollary 2: No binary self-dual code (n, :, dmin) is quasi- 

perfect for n > 72. 
This corollary of Theorem 1 is proved by the same methods used 

above in the proofs of Lemma 4 and Theorem 1. 
For the class of binary QR  code of length n = 8m + 1, it is known 

[l] that the (17, 9, 5) QR  code is quasi-perfect. However,  all other 
codes of this class which are listed in Fig. 15.02 of [7] are not quasi- 
perfect, as can be verified by a use of Proposition 1 and Lemma 4. 
One may thus conjecture that no t-error-correcting binary QR  code 
of length n = 8m + 1 with t > 2 is quasi-perfect. 
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Some New Constructions for Simplex Codes 

Hong Y. Song and Solomon W. Golomb 

Absstract-Three constructions for n-dimensional regular simplex codes 
ai, 0 5 i < n, are proposed, two of which have the property that a; for 
1 5 i < n% a cyclic shift of cyl. The first method is shown to work for all 
the positive integers n = 1,2,. . using only three real values. It turns out 
that these values are rational whenever n + 1 is a square of some integer. 
Whenever a (u, k, X) cyclic (or Ahelian) difference set exists, this method 
is generalized so that a similar method is shown to work with v  = n (the 
number of dimensions). 

Index Terms-Regular simplex codes, cyclic difference sets. 

I. INTRODUCTION 

In an n-dimensional Euclidean space, for any positive integer n, an 
n-dimensional simplex (or, n-simplex) is the convex body spanned 
by any n + 1 distinct points in general position. An n-simplex is 
regular if all ( ,hl ) edges (the lines connecting pairs of vertices) 
have the same length. It is known [l] that there is a regular n- 
simplex for all n 2 1. It is also known [l] that for all n > 5, 
there are exactly three regular hypersolids in n-dimensional Euclidean 
space: the regular simplex, the hypercube, and the cross-polytope. It 
is easy to describe a set of vertices for the n-dimensional bypercube 
[namely, all 2” point vectors of the form (&l, fl, fl,. ... , Itl)], 
and a set of vertices for the n-dimensional cross-polytope [namely, 
all 2n point vectors of the form (f 1, 0, 0, * . . , 0), (0, f 1, 0, . . . , 0), 
(0, 0, fl, .. . ,O), .a., (0, 0, 0, ... , fl)]. However,  it is not easy in 
general to describe a set of vertices for the n-simplex for all positive 
integers 12. 

The codes corresponding to the vertices of the three regular 
polytopes in n-dimensional space have been studied for their com- 
munications applications (see the references in [9]) under various 
channel assumptions. In communication environments where only 
white Gaussian noise is present and where the receiver operates 
synchronously in time and phase, it is most desirable [2], [9], [lo] that 
the signals employed be as far apart as possible. In this sense,‘it is 
known [9] that the code corresponding to the vertices of a regular 
n-simplex is the only one which maximizes the minimum distance 
between the pairs of vertices among all sets of n+l equal energy points 
in n-dimensional space. Since the exact bit error probability is also 
a function of SNR (ratio of signal energy-to-noise spectral density), 
the above condition does not guarantee the global optimality of the 
regular n-simplex code for all possible values of SNR. It is known, 
however, that the n-simplex code gives a local minimum bit error 
probability at every SNR, and gives the absolute minimum for both 
“sufficiently small” SNR and “sufficiently large” SNR [9]. 

To our knowledge, the first systematic representation, for all 
n = 1,2,..., of the n + 1 vertices of a regular n-simplex was 
given by J. Max in [5]. However,  this method uses at least n distinct 
real values, and does not have any “symmetry” among the n + 1 
vectors corresponding to the vertices. Whenever a Hadamard matrix 
of order n + 1 exists, there is a binary simplex code of ones and 

Manuscript received November 4, 1992; revised May 6, 1993. This work 
was supported in part by the United States Office of Naval Research under 
Grant Number N00014-90-J-1341. 

The authors are with the Department of EE-Systems, Communication 
Sciences Institute, University of Southern California, Los Angeles, CA 90089 
USA. 

IEEE Log Number 9215440. 

0018-9448/94$04.00 0 1994 IEEE 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 2, MARCH 1994 505 

minus ones of length n, but for these to exist the order TZ + 1 must 
be 1, 2 or a multiple of 4 [3, 6, 83. These binary simplex codes are 
easy to generate (when they exist), but the existence for all multiples 
of 4 is not yet proved. The order n + 1 = 428 is the smallest order 
for which the existence of a Hadamard matrix of order n + 1 is not 
yet known [7]. 

The purpose of this note is to exhibit two simple ways of assigning 
coordinates to the n + 1 vertices of the regular n-simplex (Section 
II). Each method constructs n + 1 vectors CG for 0 < i 5 n of length 
12 having the property that 01; for 1 5 i 5 n is a cyclic shift of cyr. 
The first method is shown to work for all positive integers n, using 
only three real values in each case. As an interesting application of 
(v, k, X) cyclic difference sets [3,6, 81, this method is generalized so 
that a similar method is shown to work whenever a (v, k, X) cyclic 
difference set exists with ZI = n. This method is further generalized 
to work (Section III) whenever an Abelian difference set exists. In 
this case, the cyclic nature of the vectors is lost but some symmetry 
remains. 

II. CONSTRUCTIONS FOR SIMPLEX CODES 

Let ~0, ~l,...,a~ be n + 1 unit vectors in n-dimensional Eu- 
clidean space representing the vertices of a regular simplex. Then, 
for every pair ai = (al, aa,. . . , a,) and oj = (br, bO,. . +, b,), the 
dot product (LY;, LYE) = cc=r a&b& must satisfy [9], [lo] 

(a;, a?) = 2, O<i<j<n (2.1) 
=l O<i=j<n. (2.2) 

Conversely, any set of n + 1 unit vectors in n-dimensional Euclidean 
space satisfying the above condition on the dot product for every 
pair of vertices represents the n + 1 vertices of a regular n-simplex 
[91> UOI. 

Theorem 2.1: Take the following n + 1 unit vectors: 

00 = L(l, 1, 1,. . .) l), 
fi 

al = +(-a, b, b,. . . , b), 

w = -$(b, -a, b,...,b), 

. . . . . . . . . 

an = $ (6, 6, b, . . . , -a) 

where cy; for 2 5 i 5 n is a cyclic shift of cyl, and where the real 
numbers a and b are given by 

lk(n-l)I/G7 -1*&G7 (a> b) = ( n , n ). (2.3) 

For each positive integer n = 1, 2, .a., the above scheme locates 
the rz + 1 vertices of an n-dimensional regular simplex on tbe unit 
hypersphere. If, in addition, n + 1 = m2 for some integer m, then 
a and b are rational, with 

(a, b) = ( m2+m-1 1 

m+l ‘G-T-i > 

or 

( -m2+m+1 -1 
m-l >-. m-l > 

a0 = &( 1 1 1 1 1 1 1 1 ) 

a1 = &( - + + + + + + + ) 

a2 = $( + -++++++) 

a3 = k( + + - + + + + + ) 

04 = $( + t + - + + + + ) 

a5 = &( + + + + - t + t ) 

a6 = &( t + t + t - t + ) 

a7 = $( t t t t t t - t ) 

(Yg = A( t t t t t t t - ) 

Fig. 1. Vertices of a regular g-simplex given by the construction in 
Theorem 2.1. Here, “-” represents --a and “+” represents +b where 
(a, b) = (11/4, l/4) or (-5/2, -l/2). 

Proofi From (2.1) and (2.2), we have the following system of 
three equations: 

(ao, a;) = &a + (n - 1)b) = -; for 1 5 i 5 n, 

(a;, aj) = i(-2ab + (n - 2)b’) = -; for 1 5 i < j 5 n, 

(a;, a;) = ;(a’ + (n - l)b2) = 1 for 1 5 i < 72. 

Solving the above system of equations yields the values of a and b 
given in (2.3). 0 

As an example, we show 9 unit vectors in Fig. 1 which are the 
vertices of a regular simplex in g-dimensional space. In this example, 
we have (a, b) = (11/4, l/4) or (-5/2, -l/2). 

A (v, k, X) cyclic difference set D = {sl, ~2,. . . , sk}  is a set of 
k residues mod v such that for each nonzero residue d mod v there 
exist X solutions (x, y) to the equation z - y  z  d (mod v). A simple 
counting argument shows that 

k(k - 1) = X(v - 1) (2.4) 

is a necessary condition for the existence of a (v, k, A) cyclic 
difference set [3], [6], [8]. The construction in Theorem 2.1 comes 
from a trivial difference set with parameters k = 1, X = 0, (thus, 
k - X = l), and is a special case of the following. 

Theorem 2.2: Assume there exists a (v, k, X) cyclic difference 
set D and take 

au = %2, p3, p4,. . . 
4 

,Pl) 

where /3j = -a if j E D, and pj = b if j $ D, and where 
&Z,"', cy, are all the other cyclic shifts of (11, and where the real 
numbers a and b a.re given by 

1 v-k a=-*- 
V V 

Then, the 2, + 1 vectors QO,  (~1, . . . , W, locate the v + 1 vertices of 
a v-dimensional regular simplex on the unit hypersphere. 
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Proof: From (2.1) and (2.2), we have the following system of 
three equations: 

(a;, a;) = i(ka’ + (v - k)b’) = 1 for 1 5 i 5 12, 

( ao, a;) = ;(-ka + (v - k)b) = + for 1 < i 2 n, 

(cy;, cyj) = $a’ - 2(k - X)ab 

+(v - 2k + X)b2) = + forl<i<j<n. 

The first two simultaneous equations have two pairs of real roots a 
and b which can be expressed as shown in (2.5) using the relation 
212 - 1 = k(v-k!y+l). Multiplying both sides of the third equation 
by v3, one can rewrite it as 

X(V~)~ - 2(k - X)(va)(vb) + (v - 2k + X)(vb)’ + v2 = 0. (2.6) 

If we substitute (va)“, (vb)2, and v’ab into (2.6) where 

(va)’ = 1 + (v - k)‘s f 2(v - k),/z; 

(vb)2 = 1 + k2s F 2,/z, 

v+l 
(v2ab) = -1 + k(v - k)m 

then the left-hand side of (2.6) takes the form R + S fi where 
R and S denote the rational parts. Then, 

4 

S = zt2X(v - k) F 2(k - X)k l 2(k - X)(v - k) 

7 2k(v - k) f 2k(k - A) = 0, and 

R=X l+(v-k)“+l 
[ 

=] -2(k-A)[-l+k(v-k)g] 

+ (v - 2k + A) 
[ 
1+ k 

2v+1 
It-x 1 + v2 

= ~[Xv(v - 1) - vk2 + vk], 

which must also be zero by (2.4). 0 
For the rest of this note, let n denote k - X, following the standard 

notation [3] of cyclic difference sets. Then, it is not hard to show 
that 4n - 1 5 v 5 n2 + n + 1 for any (v, k, X) cyclic difference 
set D. From these inequalities, one has 

v+1 4<---- 
n 

<n+1+;<n+2. 

When * = 4, D is called a cyclic Hadamard difference set and 
it has parameters v = 4n - 1, k = 2n - 1, and X = n - 1. In this 

CQ = +( 1 1 1 1 1 1 1 ) 

aI = $;( - - t - t + + ) 

02 = *5( + - -t-t+) 

03= &(+t--t-t) 

a4= #ttt- -t-) 

% = A( -ttt--+) 

a6= $;(t-ttt- -) 

ff7= &(- + - +tt-) 

Fig. 2. Vertices of a regular 7-simplex given by the construction in 
Theorem 2.2. Here, “-‘I represents --a and “+" represents +b where 
(a, b) = (-1, -1) or (9/7, 5/7). 

case, the values of a and b are rational, with 

(a, b) = (-1, -1) or 
4n + 1 4n - 3 
- 
4n-1’4n ’ > 

Note that the first choice corresponds to the v+l binary simplex codes 
of ones and minus ones of length v and also to the cyclic Hadamard 
matrix of order v + 1 = 4n. When * = n + 1 + i, D is called 
a cyclic planar difference set and has parameters v = n2 + n + 1, 
k = n + 1, and X = 1. In this case, 

a= lfn2dx 

n2+n+l ’ 

and 

b= 
-l&(n+l)Ja 

n2+n+1 
which can never be rational unless n = 1 [trivial] or n = 2 [this 
is equivalent to the (7, 3, 1) cyclic Hadamard difference set]. As an 
example, we show 8 unit vectors in Fig. 2 which are the vertices of a 
regular simplex in 7-dimensional space. This is from the (7, 3, 1) 
cyclic difference set D = (1, 2, 4). In this example, we h&e 
(a, b) = (-1, -1) or (9/7, 5/7). 

If T is the square of an integer, then the values of a and b in 
Theorem 2.2 are rational. Equation (2.7) implies that * can have 
values m2 for 4 5 m2 5 n + 1. Except for the cyclic Hadamard 
difference sets in which * = 22 for all positive integers n > 2, it 
turned out that, for 2 2 n 5 343, there are only two possible sets of 
parameters (v, k, X), which are (377, 48, 6) and (2911, 195, 13), 
and their complements, for which (1) $@ is the square of an integer 
and (2) both k and X come out as integers. However, one can easily 
rule out the existence of both the (377, 48, 6) and (2911, 195, 13) 
cyclic difference sets (and hence, of their complements as well) by 
the multiplier theorem and its consequences [3, 6, 81. Nonexistence 
of (v, k, X) cyclic difference sets for which $ is the square of 
an integer, except for the cyclic Hadamard difference sets, is still 
unsettled for n 2 344. 

III. GENERALIZATION TO ABELIAN DIFFERENCE SETS 

A further generalization of the previous methods to “Abelian 
difference sets” is quite straightforward and can be done easily. All 
the terminologies and basic results on abelian difference sets in the 
following are from standard texts, e.g., [3, 6, 81. Let G be an abelian 
group of order v. A (v, k, X) difference set in G is a k-subset D of 
G such that for each nonzero element g E G there exist X solutions 
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G = Z2x.Z2xZ2xZ, = {94i=1,2,...,16} 

D = {OOOO, looO,OloO,WlO,ooOl, 1111 } 
= { 1,2,3,4,5, 16 } as a set of indices 

G 

J & 

1COOO 

2 1000 

3 0100 

4 Co10 

5 oool 

6 1100 

7 0110 

8 0011 

9 1001 

10 1010 

11 0101 

12 0111 

13 1011 

14 1101 

15 1110 

16 1111 

position=1 2 3 4 5 6 7 8 9 10111213141516 

4a, =(l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 

4a, =(-----++++++++++-) 

da, =(.--+++-++--+-++++) 

da, =(-+-++--+++-+-+i+) 

da, =(- + + - + + - - + - + + + - + +) 

4a, =(-+++-++--+-+++-+) 

4a, =(+--++-+-+++++--+) 

4a, =(++--++-+-++-++-+) 

4ag =(+++---+-+++--+++) 

4a, =(+-++-+-+-+++--++) 

la ,,=(+-+-+++++--+-+-+) 

4-a ,,=(++-+-++++---+-++) 

4% =(+-++++--++--+++-) 

la ,,=(++-++++---++-++-) 

%4 =(t++-t-++-t-++-+-) 
%s =ct+++---tt-++++--) 
%6 =(-++++++++++-----I 

Pig. 3. Vertices o3 of a regular 16-simplex by the rule pi, j = --a 
if gj E D + gz and A,] = b if gj +Z D + g; where 
a; = ~((Pi,1,P;,2,Pz,3,...,Pi,v) f or i = l....,v, and where 
D is a (16, 6, 2) difference set in an abelian group G. Here, “-” represents 
--a and “+” represents +b where (a, b) = (w, w). 

(z, y) where CC, y E D to the equation z - y = g. Abelian difference 
sets are known to exist for (v, L, X) = (421’, 27~’ f U, 1~~ f U) 
whenever u = 2’3” where r and s are arbitrary nonnegative integers 
[41. 

Assuming there exists a (v, Ic, X) difference set D in an abelian 
group G = {gi = identity, 92, 93,. . . , gv} of order o, take the 
following v + 1 unit vectors of dimension o: 

a0 = L 1, 1, 1,. . * ) l), 
J( 21 

1 
OI;=~P;,I,P~,~,P;,~,...,P~,~), fori=1,2,..*,v 

J( 
where Pa, j = -a if gj - g; E D, and p;, j = b if g3 - g; @ D, and 
where a and b are also given by (2.5). Then, the w + 1 unit vectors 
ffo, ffl,“‘, CK~ locate the u + 1 vertices of a w-dimensional regular 
simplex on the unit hypersphere. 

For the proof of this method, one needs to note that the family of u 
subsets D + g; C G of size k for i = 1, 2,. . . , u forms a symmetric 
2 - (v, k, X) balanced incomplete block design [6], [3], [8]. Here, 
the underlying group G is the point set of size u and the incidence 
structure is the set-membership. Furthermore, note that the positions 
of Q; (except for (~0) into which we put -a are the indexes j of 
gj E G such that gj E D + g;. Since each block D + gZ contains 
Ic elements, we have 

(012, 2) a;) = l(ka2 + (7~ - k)b2) for 1 5 i 1. n, 

( ~0, a;) = :(-/co + (u - k)b) for 1 5 i < n. 

two blocks have exactly X elements in common]. Therefore, in the 
summation PI, &, i + P;, zP,, 2 + . . . + Pi, &$, U, the term (-a)’ 
occurs X times, the term -ab occurs 2(lc - X) times, and finally, the 
term b2 occurs (r~ - 2L + X) times. This proves 

(cq, aj) = i(Xa* - 2(/c - X)ab 

+(u - 2k + X)b’) for 1 5 i < j I n. 

Now, the rest follows easily as in the Proof of Theorem 2.2. 
As an example, we show 17 unit vectors in Fig. 3 which are the 

vertices of a regular simplex in 16-dimensional space. This is from 
a (16, 6, 2) difference set 

D = {(0000), (lOOO), (OlOO), (oolo), (oool), (1111)) 

in an Abelian group 22 x 22 x ZZ x Za of order 16. In this example, 
we have (a, b) = (w , w) . Note that the 16 x 16 matrix 
of +‘s and -‘s corresponding to the components of (~1, cy2, . . . , (~1s 
is indeed the incidence matrix of a symmetric (16, 6, 2) BIBD, and 
that it is symmetric along the diagonal. 
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The value of (a”, cyj) for 1 5 i < j 5 n can easily be computed 
by the property of the symmetric BIBD [3], [6], [8] that any two 
elements of G are members of exactly X blocks [or equivalently, any 


