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VI. CONCLUDINGREMARKS 

In our derivation of the capacity region of the S-CDMA 
channel, we allowed the channel-input symbols to take any 
values in the complex field. In practice, one generally wishes to 
use proper complex, discrete-valued channel-input symbols. It is 
intuitively obvious that such equiprobable, discrete-valued sym- 
bols achieve capacity when the SNR is sufficiently small, since 
the condition for approximately achieving capacity is that _Y = _U 
+ & be approximately Gaussian, not that _U be approximately 
Gaussian, This is confirmed in Fig. 3 where we show the sum 
capacity C4&S) of the S-CDMA channel specified by the 
sequence sets 9 =-U;;, pZ, Y;, and y4 given in Example 2, 
when the quaternary phased-shift keying (QPSK) modulated 
channel-input symbols X,, k = l;.., K, have average energy 
E[]X,]‘] = w, and are in phase synchronism. Note that the 
sequence multiset pZ contains two repetitions of four orthogo- 
nal sequences. This means that the four-dimensional S-CDMA 
channel decomposes into four 2-user GMAC’s having quater- 
nary channel-input symbols, which is why the asymptotic (for 
large SNR) sum capacity C,,,,(S,) is 2. 1.5 bits per chip [2, p. 
3921. In this case, the joint decoder can be split into four 
separate decoders, each of which jointly decodes only two users. 

Although we have considered only synchronous CDMA, our 
upper bound on the sum capacity applies also to general (i.e., 
asynchronous) CDMA systems of bandwidth W = 1/(2T,), where 
T, is the chip period. The proof of Proposition 1 can be modified 
to show in this case that the upper bound on the sum capacity is 
achieved when the samples U(nT,>, all n, of the transmitted sum 
signal U(t) are zero-mean, proper complex, Gaussian random 
variables that are uncorrelated and have the same variance. This 
happens, for example, whenever L = 1, the spectrum of the chip 
waveform is flat over the specified frequency band, and the 
channel-input sequences X,[.], k = l;.., K, are sequences of 
independent and zero-mean, proper complex, Gaussian random 
variables. 
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On the Existence of Cyclic Hadamard 
Difference Sets 

Hong Y. Song and Solomon W. Golomb 
Abstract-The main conjecture of this note is the following: if a cyclic 

(v = 4n - 1,k = 2n - 1, X = n - 1) Hadmard difference set exists, the 
the value of v must be either a prime, or a product of “twin primes,” or 
one less than a power of 2. Six cases, u = 399, 495, 627, 651, 783, and 
975, which were once listed as the possible exceptions for v < 1000, are 
now fully investigated, and all the cases of v < 10000 are now verified 
relative to this conjecture, with at most 17 possible exceptions. 

Index Terms-Cyclic Hadamard difference sets, classification of bal- 
anced binary PN sequences, two-level autocorrelation sequences. 

I. INTRODUCTION 

Consider a binary sequence ai of length u for aj E { + 1, -l}. 
The (unnormalized) periodic autocorrelation function f(~> for 
7 = 0, 1,2;.., u - 1 is defined to be 

u-1 

f(T) p c upi+, (1.1) 
i=O 

where the subscripts are taken modulo v. Balanced binary 
sequences for which the function f(T) has only two distinct 
values are known to be important because of their applications 
to various digital communications systems [7]-[9], [ll], [17]. This 
property of balanced binary sequences is called the two-level 
uutocowelution propeq [a], and can be stated as follows: 

f(T) = (“y,” ;;;I;,, ,)...) v - 1. (1.2) 

A balanced binary “two-level autocorrelation sequence” of 
length v is also known as a “cyclic Hadamard sequence” be- 
cause of its relation to cyclic Hadamard matrices of order v + 1, 
and hence to (u = 4n - 1, k = 2n - 1, A = n - 1) cyclic dif- 
ferences sets [l], [7], [14]. Specifically, such a sequence has 
length v = 4n - 1 for some positive integer n, consists of k = 
2n - 1 + l’s (and k + 1 = 2n - l’s), and has out-of-phase auto- 
correlation f(T # 0) = - 1 for all out-of-phase positions T f 0 
(mod v). The question is then: 1) for which values of v = 4n - 1 
do these “cyclic Hadamard sequences” of length v exist?, and 2) 
what constructions canbe used to generate these sequences? In 
Baumert’s book [l], it is mentioned. that all known examples of 
cyclic Hadamard sequences have values of v from only three 
different “families”: 

(A) v = 4n - 1 is a prime number, 
(B) v = p(p + 2) is a product of “twin primes,” 
(C) v = 2’ - 1, for t = 2,3,4;.*. 
It is also reported in 111 that there are no other values of 

v < 1000 with cyclic Hadamard sequences, except for the six 
cases v = 399, 495, 627, 651, 783, and 975, not fully investigated. 
It turned out that these six cases are also ruled out (Section II) 
for the existence of cyclic Hadamard sequences. In conclusion, 
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there are no counterexamples to the following conjecture for 
u < 1000: if there exists a cyclic Hadamard sequence of length u 
then u = 4n - 1 must be either a prime, or a product of “twin 
primes,” or one less than a power of 2. 

The known constructions corresponding to these values of u 
are as follows. 

(A) u = 4n - 1 is a prime. 

Al: The “Legendre sequence” (quadratic residue) con- 
struction in all such cases [8]. 
A2: Hall’s “sextic residue” construction, when the prime 
number u is of the form 4A2 + 27 for some integer A 
[=I. 

(B) u = p(p + 2) is a product of “twin primes.” 

Bl: The “Jacobi sequence” construction (generalization 
of the Legendre sequence idea) as first described by 
Stanton and Sprott [18]. 

(C) u = 2’ - 1 for some integer t = 2,3,4, ... 

Cl: The linear shift register sequences (also called m-se- 
quences) for all values of t > 1 [8]. 
C2: The Gordon-Mills-Welch sequences (GMW se- 
quences) for certain composite values of t [lo], [ll]. 
C3: Three miscellaneous examples at u = 2’ - 1 = 127 
found by Baumert and Fredricksen [2], two miscellaneous 
examples at u = 2’ - 1 = 255 found by Cheng (Type 2 
and Type 3 in [3]), and two miscellaneous examples at 
u = 29 - 1 = 511 found by Dreier (first and third non- 
Singer types in [5]). These examples are not otherwise 
explained. (A complete search [3]-[6] has been done only 
for t 5 9, u I 511.) 

By using several of the known nonexistence tests (both non- 
constructive and constructive) and a computer, the above conjec- 
ture is now reconfirmed for all u < 1000, including those six new 
cases. Furthermore, it is verified up to u < 10 000, except for the 
following 17 cases: 1295, 1599, 1935, 3135, 3439, 4355, 4623, 
5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135, 9215, 9423. 

This conjecture could conceivably be false (considering that 
there seems to be no simple property common to the above 
three families of integers), but the evidence for it is becoming 
impressive. A brief summary of the computer search is discussed 
in the next section. 

II. SOME COMPUTATIONS 

Up to 10 000, there are 2500 values of u = 4n - 1 which are 
congruent to 3 mod4. Of these, 619 numbers are primes, 8 
numbers are products of twin primes, and 12 numbers are one 
less than a power of 2. There are 5 numbers which are both 
prime and one less than 2’[u = 3,7,31,127,8191, known as 
“Mersenne primes”]. The number c’ = 15 is the only case which 
is both a twin prime product and one less than 2’. Therefore, 
there are 2500 - 633 = 1867 cases remaining which are the 
initial targets for the existence/nonexistence test. 

It turned out that the following two theorems (for noncon- 
structive test) are most powerful in initially screening out most 
of the 1867 cases. Application of these theorems is rather easy, 
and all the terminologies are from either [l] or [14]. 

Theorem 1 (Hall and Ryser, 1951 (1.51): If a nontrivial (v, k, A) 
difference set exists for odd u, then, for every divisor w of u, the 

r 
L 

L 

TABLE I 
DECOMPOSITION OF INTEGERS MOD 27 INTO 7 

CYCLOTOMIC COSETS 

following equation 

z2 = m2 + ( _ ,p ww2 where (n = k - A) (2.3) 

has a solution in integers x, y, z, not all zero. 
Theorem 2 (Mann, 1964 (161): Let w > 1 be a divisor of v, 

and assume a nontrivial (u, k, A) difference set exists with w- 
multiplier t 2 1. Let p be a prime divisor of n = k - A for 
which (p, w) = 1. If there exists an integer f 2 0 such that 
tpf = - 1 (mod w), then n is strictly divisible by an even power 
of p. 

Theorem 1 rules out 1271 cases, and fails to rule out the 
remaining 596 cases. Of these 596 cases, Theorem 2 rules out 
353 cases, and leaves open 243 cases. Of these 243 cases, two 
more theorems [l, Theorems 2.15 and 2.161 are used to rule out 
17 cases. To handle the remaining 226 cases, the following 
necessary condition (for constructive test) is used. 

Theorem 3 (Baumeti, 1971 [l]): If a cyclic (u, k, A) difference 
set exists, then, for every divisor w of v, there exist integers 
b,(i = 0, 1,2;.., w - 1) satisfying the diophantine equations 

w-1 w-1 
c b,=k, zb:=n+;, 0 I bj I u/w (2.4) 

i=O r=O 

where n = k - A and 
w-1 
c bibidj = z (2.5) 

i=O 

for j = 1,2;.., w - 1. (Here, the subscript i - j is taken mod v.) 
The cases in which there are only three cyclotomic cosets 

modulo w for some divisor w of v are easy to test systematically 
by applying Theorem 3 (we call this a “3-cosets-test”). The 
smallest such case is v = 27 and will be ruled out by the 
following argument. By Theorem 3, if there exists a (27,13,6) 
difference set D, then there exist integers b,, b,, b, satisfying 

b, + b, + b, = 13 

b; + bf + b; = 61 

0 5 b,,b,,b, I 9. 

(2.6) 

These equations have exactly six solutions, which are all the 
permutations of {3,4,6}. To show the nonexistence, note that 
n = k - A = 7 is a multiplier in this case, and there are seven 
cyclotomic cosets mod27 whose sizes and smallest representa- 
tives are shown in Table I. It also shows four variables a,, a2, a3, 
and a4, each of which indicates how many cosets in each class 
must be in the (possible) difference set D. Therefore, a, E 
(0, 1,2,3}, a2 E {0, 1,2), and ax, a4 E (0, 1). Note that bj for j = 
0, 1,2 in Theorem 3 counts the number of residues (which must 
be in D) which are congruent to j mod3. This leads to some 
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additional constraints on bj’s as follows: Further Results on Difference Triangle Sets 

b, = a, + 3a,, b, = 9a,, b, = 9a,. (2.7) Zhi Chen 

Now, it is not hard to determine that there are no solutions 
(a,, a2, a3, a4> from the values {b,, b,, b2} = {3,4,6}. This guar- 
antees the nonexistence of a (27,13,6) cyclic difference set. Note 
that the analysis could have determined possible values of ai’s. 
In that case, one must check all the possible choices of cosets 
determined by at’s. This will either lead to the proof of nonexis- 
tence or find a counterexample to the conjecture. 

Abstract-Further results on the upper bounds for difference triangle 
sets (DTS) are derived from disjoint difference sets and additive se- 
quences of permutations, which greatly improve the known bounds. 

Index Terms-Codes and coding, combinatorial theory, convolutional 
codes. 

I. INTR~DuC~~N 

The “3-cosets-test” rules out 171 cases (v = 627 is one of 
these cases), but cannot settle the final 55 cases. The remaining 
55 cases are treated individually using Baumert’s necessary 
condition (above) and various other combinations of divisors of 
u. It turned out that the following 38 cases are ruled out: 175, 
343,399,651,975,1155,1331,1387,2223,2263,2299,2415,2703, 
2883,3055,3567,3663,3887,4015,4303,4495,4687,4975,5047, 
5475,5551,6351,6399,6859,7231,7375,7923,8883,8899,9331, 
9583, 9647, 9711; and the following 17 cases remain open: 1295, 
1599, 1935, 3135, 3439, 4355,4623,5775, 7395,7743, 8227, 8463, 
8591, 8835, 9135, 9215, 9423. 

Difference triangle sets (DTS) were first introduced in the 
construction of convolutional self-orthogonal codes by Robinson 
and Bernstein [l]. Up to now, many constructions of DTS have 
been proposed by many researchers [2]-[6]. The best known 
lower bounds and upper bounds on the size of DTS can be 
found in [4], [6]. For the applications of DTS, see [4] and the 
references given there. 

Finally, all of these results were obtained by computer, and 
await independent confirmation by others to fully establish their 
validity. 

In this correspondence, we present further results on the 
upper bounds of DTS. In [6], we have proposed a construction of 
DTS from so-called disjoint difference sets (DDS), and obtained 
many new upper bounds. Here, we obtain new upper bounds of 
DTS from DDS derived from the finite Euclidean geometry and 
difference families [13]. Also, additive sequences of permuta- 
tions are used to construct new DTS. These new results greatly 
improve the best known upper bounds. 
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II. DIFFERENCE TRIANGLE SETS CONSTRUCTED FROM 
DMOINT DIFFERENCE SETS 

An (I, J)-DTS is a set of A = (A,, AZ;.., AI}, where 

Ai = {aij10 I j I J}, lli<Z, 

have integer elements such that 
0 = ai < at, < ... < ai, 

for all i and such that the integers aij and aij, with 1 I i I 1 
and 0 I j’ < j I .Z are distinct. Let 

m  = m(A) = max{a,,ll I i I Zl, (1) 

M(Z, J) = min {m(A>lA is a (I, J)-DTS’]. (2) 
An (I, .Z)-DTS A such that m(A) = M(Z, .Z), is called optimal. A 
convolutional self-orthogonal (I + 1, I, m) code with minimum 
distance d = J + 2 can be constructed from an (I, .Z)-DTS. It 
has generator polynomials: 

g,(D) = c  Daij, llill. (3) 
j=O 

Since m  determines the length of the encoding and decoding 
shift registers, it is desirable to make m  as small as possible. For 
other applications of DTS, see [4]. 

Many constructions for DTS have been proposed. In [6], the 
author presented a construction from disjoint difference sets 
(DDS). By a (u, k, t)-DDS of order v, we mean a family (Btli E I, 
t = ]Z]) of subsets of Z,, each of cardinality k, and such that 
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