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Abstract-Picking up exactly one member from each of the nonperiodic 
cyclic equivalence classes of an (n, k + 1) Reed-Solomon code E over 
GF(q) gives a code, E”, which has bounded Hamming correlation values 
and the self-synchronizing property. The exact size of E” is shown 
to be t Cdln p(d)~~~+[$], where p(d) is the Miibius function, [z] is 
the integer part of 5, and the summation is over all the divisors d of 
n = 4 - 1. A construction for a subset V of E is given to prove that 
IE”I 2 IV] = (@+I - p--N )/(Q - 1) where N is the number of 
integers from 1 to k which are relatively prime to Q - 1. A necessary and 
sufficient condition for IE”I = II/( is proved and some special cases are 
presented with examples. Furthermore, for all possible values of 4 > 2, 
a number B(q) is determined such that (E”l = II/( for 1 5 k 5 B(q) 
and JE”I > IV/ for k > B(q). 

Index Terms-Reed-Solomon codes, frequency-hopping patterns, com- 
binatorial enumeration. 

I. INTRODUCTION 

In recent times, communication requirements have evolved for 
symbol alphabets that are noncoherent self-synchronizable [l], [6], 
[12], [15], [16]. Applications include frequency-hopping spread- 
spectrum communications, pulse position modulation in radio 
and optical channels [3]-[.5], [7]-[9], [13], etc. The (n, k + 1) 
Reed-Solomon codes over GF(q) studied here are maximal Lth- 
order near-orthogonal codes [l], and self-synchronizable in the sense 
that the picking up of exactly one member from each of the 
nonperiodic cyclic equivalence classes of such a Reed-Solomon code 
E gives a code, call it E”, which satisfies the following. 

1) k is the maximum number of occurrences of any symbol in a 
codeword (see Proposition 2.1). 
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2) 

3) 

4) 

k is the maximum number of overlaps between two distinct 
cyclic shifts of a single codeword (the Hamming autocorrela- 
tion property, [l]). 
k is the maximum number of overlaps between the cyclic shifts 
of any two distinct codewords (the Hamming crosscorrelation 
property, PI>. 
If (al,... ,an) and @I,... , b,) are two codewords, then 
any subsequence of n consecutive digits of the sequence 
az,...,an,bl,... , b,-l is at a (Hamming) distance of at least 
n-2k from any other codeword (comma-free of degree n-2k). 
Hence, it has the self-synchronization property [2]. 

In the application of designing hopping patterns for frequency- 
hopping multiple-access communications, it is desirable to use each 
of the available frequency slots as nearly equally often as possible in 
each period. In an ideal situation, each pattern (user) would make 
use of each frequency slot the same number of times in every 
period so that the carrier frequency of the transmitted signal could 
be hopped as randomly as possible. Here, the code E” is shown to 
have the property that k is the maximum number of occurrences of 
any symbol(frequency) in one period (see Proposition 2.1). Thus, for 
code E” the number of visits to each frequency slot in one period 
is limited by k. Furthermore, the Hamming correlation properties 2) 
and 3) given for E” are essential in order to guarantee a certain level 
of system performance [13]. Also code E” can be used to design 
the sequence needed to establish frame synchronization in a pulse- 
position modulation communications system for optical channels 
[12]. In such a case a symbol of a codeword corresponds to a specific 
position in one frame interval. The fact in code E” that the number 
of overlaps between any cyclic shifts of two codewords (or distinct 
cyclic shifts of a single codeword) is limited by k is most desirable 
in both of the above applications. 

In Section II, the (n, k + 1) Reed-Solomon code E is briefly 
reviewed, and the fact that the code E is MDS(maximum-distance- 
separable) is used to prove Proposition 2.1. Nonperiodic cyclic 
equivalence classes of E are formally defined, and their number is 
counted in Theorem 2.2. 

Reed and Wolverton [2] gave a “reasonably” systematic method 
for generating all of the codewords of E’, which (by the definition in 
[2]) represents both the periodic and nonperiodic cyclic equivalence 
classes of E. Hence, the problem of finding an algorithm which 
generates all of the nonperiodic classes (only) exactly once still awaits 
a better solution. Such an algorithm would generally depend on the 
structure of the prime factorization of the number n = Q - 1 and as 
a consequence seems to defy any straightforward solution. 

In Section III, a constructive lower bound is given in Theorem 3.3, 
and examples are given for the cases in which this bound is attained. 
Some parts of Theorem 3.3 are implicitly proved in either [l] or [2]. 
It should be emphasized at this point that the lower bound given in 
Theorem 3.3 provides not only a “reasonably good” bound on 1 E” 1 
for the number of elements in E”, but also the exact value of IE”) in 
many cases. The cases in which the bound is attained are classified 
completely for any prime power q > 2 in Corollary 3.2. Finally, the 
construction leading to (3.8) provides an easy method for generating 
the nonperiodic classes needed for practical applications. 

II. CYCLIC EQUIVALENCE CLASSES OFTHE RS CODES 

Let cy be a primitive element of GF(q), where Q is a prime power, 
and define k + 1 vectors of n-tuples, where n = 4 - 1, over GF(q) 
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as follows: 

ei = (&2,. . . , cp), for i = 0, 1,2,. . f , k. (2.1) 

Then, the (k + 1)-dimensional vector space E over GF(q), which 
is defined in [l] by 

E = &x,e, 1 x; E GF(q)} 
i=o 

is an (n, k + 1) Reed-Solomon code with minimum distance n - k, 
and hence, is a maximum kth-order near-orthogonal code, i.e. no two 
members of the code overlap in more than k places., 

Proposition 2.1: Except for the constant vectors, each symbol 
occurs at most k times in each codeword of E. 

Proof: Recall that E is given explicitly in (2.2). Thus, E 
contains q constant vectors of length n. If any symbol ‘u occurs 
more than k times in some non-constant codeword a~ E E, then 
the (Hamming) distance between z and u = (w , w, . . . , u) is less than 
n-k. On  the other hand, since this code is MDS (maximum-distance- 
separable), the minimum (Hamming) distance is exactly n - k. 0 

Define the following cyclic permutation p of an element z = 
(Vl,W,‘.’ ,wn) of E as pz = (va,..~,v~,vr). For any z, g in 
E, if z  = p”y for some integer m, then z and y are said to be p- 
equivalent. p-equivalence gives a partition of E into disjoint subsets, 
called cyclic equivalence classes. Thus picking up one element from 
each equivalence class gives a subcode of E, say E’, which has the 
property that the cyclic shifts of two distinct codewords of E’ do 
not overlap in more than k places. The exact size of the code E’ 
is given in [l]. 

Theorem 2.1 ([I, Theorem 21): Assume the same parameters 
and notation n, k, q as previously defined. Then the number 
1 E’I of cyclic equivalence classes in E is 

IE’I = i c qi(d)q’+[fq 
din (2.3) 

where b(d) is the Euler &function, [x] is the integer part of 2, 
and the summation is over all the divisors d of n = q - 1. 

Next, define a subset E” of E’ as follows: 
Definition 2.1: El’ consists of those codewords x E E’ such 

that pix # x for j = 1,2,:..,n - 1. 
Thus, E” represents each of the nonperiodic cyclic equivalence 

classes (which are the p-equivalence classes which have the max- 
imum period q - 1) exactly once. It is evident that E” has the 
additional property that any two distinct cyclic shifts of a single 
codeword in E” overlap in no more than k places. 

Theorem 2.2: Assume the same parameters and notation n, k, q 
as previously defined. Then the number JE”) of nonperiodic 
cyclic equivalence classes in E is 

IE”I = ; c /&)q’+[:l, 
+ 

(2.4) 

where p(d) is the Mobius function, [z] is the integer part of x, 
and the summation is over all the divisors d of n = q - 1. 

Prooj? Consider the cyclic group G  = {p’ (1 5 j 5 n} of order 
n and its action on the elements of E. The number of orbits in E 
under G  is the size of E’. Let Cd be the total number of codewords 
in E which have a maximum subperiod cl for each divisor d of the 

TABLE I 
SOME EXACT NUMERICAL VALUES OF [I?‘[ FOR n = 63 

k n - 2k (El (E’I E” 

1 61 4096 128 64 
2 59 262144 4224 4160 
3 57 16777216 266496 266240 
4 55 1073741824 17043712 17043456 

codeword length n. Clearly, a codeword z has a maximum subperiod 
d if and only if d is the smallest positive integer such that pdz = Z. 
The problem is to find C, = I E” I. 

Since each codeword with a maximum subperiod d contributes 
exactly d times in E, one evidently has the following relation: 

c dcd = IEl = q”+l. 
din 

To apply the Mobius Inversion Formula, one needs to express the 
right-hand side of (2.5) as a function of n. 

Let l(pd) be the number of codewords of E which are left fixed by 
pd E G. Note that pdz = Cf”=, z;pde; = CF=, xiaide;. Therefore, 
z is fixed by pd if and only if old = 1 for any npnzero coefficients 
2; Of 2. But aid = 1 if and only if id is a multiple of q - 1 or i 
is a multiple of 9, the number of which from 0 to k is given by 
1 + [s]. Therefore, 

Substitution of I(p”) from (2.6) into (2.5) yields (E( as a function 
of n, namely the result, 

x  dCd = ql+[$%l. 

din 
(2.7) 

Finally, application of the Miibius Inversion Formula [14, 151 pro- 
duces 

the desired result. 0 

Example 2.1: Let q = 26 = 64, q - 1 = n = 63 = 32 . 7. 
Then, for each k between 1 and 63 the nump of codewords in 
E” is &(641+k - 641+[Q1 - 641+[y1 + 641+IEl). The exact values 
of IEJ, IE’I, and ] E”I are calculated for small values of k, and are 
given in Table I. 

Corollary 2.1: Given q and k such that 1 5 k $ q - 2, let N  
be the number of integers from 1 to k which are relatively prime 
to q - 1. If q - 1 = pt for some prime p and t = 1,2, . s  ., then 
IE”I = (qk+l - q”+y/(q - 1). 

Proof Since ~(1) = 1, p(p) = -1, and CL($) = 0 for s 2 2, 
(2.4) yields 

IE”I = (p(l)ql+k + p(p)q’+[$/(q - 1) 

= (ql+” - q1+[9)/(q - 1) 

= (ql+” - ql+k-‘y/(q - 1) 

counts the number of integers from 
Cl 
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III. A CONSTRUCTIVE LOWER BOUND ON 1 E”I 
IA P = {il = 1 < i2 < *.: < in} be the set of N integers from 

1 to k which are relatively prime to q - 1. Also let br , b2,. . . , bN 
be any N nonzero elements of GF(q). Now, make a recursive 
construction of N subsets V(l), V(2), . . . , V(N) of E in accordance 
with the following rule: 

V(1) = {z E E/XI = bl}, 

V(2) = (z E Elz;, = b2,xl = 0}, 

Next, form the union V of the V(i)‘s, i.e., 

(3.8) 
i=l 

Theorem 3.3: For any i from 1 to q - 1, let ei be the vectors 
as given in (2.1). Then, the integer pi = fi is the period of 
e; where (i, q - 1) denotes the greatest common divisor of i and 
q - 1. For any given k between 0 and q - 2, let Q be the set 
of integers from 0 to k which are not relatively prime to q - 1 
(i.e., the complement of P in (0 5 i 5 Ic}). Let V be the subset 
of E constructed in (3.8). Then 

b+l _ k+l-N 
lE”J_>lVl=q qyl , 

where the equality holds, if and only if there exists no subset Q’ 
of Q such that the least common multiple of the pi’s for i E Q 
is q - 1. 

Proofi Recall that e; = (o?, CYST, * ‘.,ani), and that pde; = 
ozde;. Therefore, the period of e; is the multiplicative order of o?, 
which is clearly given by .“-y 
of GF(q). 

(Z,S where 01 is the primitive element 

Since Q is the complement of P in (0 5 i 5 k}, the mth-cyclic 
shift of z E E for any integer m can be expressed by 

pmx=pm(xile;, +.a- + xiN eiN + C Xi%) 
iCQ 

= x;,p”e;, +..e + xiNfmeiN + C Xip”ei 
iEQ 

= x;lQ mzle;l + se’ + XiNO!miNeiN + C X;CITmie;. 

iCQ 

The period of z is the least common multiple of the pi’s for which 
xi # 0. Therefore, any z E V must have the maximum period q - 1 
since it has at least one index i such that zi # 0 and pi = q - 1. 

Suppose pmz = y for some m. If 2 E V(s) and y E V(t) where 
s < t, then since yi, = 0 by the construction leading to (3.Q the 
coefficient of e;, in pm2 is omis b, = y;, = 0. But, this is impossible 
since b, # 0 and amis # 0. If both z and y are in V(s), then since 
yi, = b,, one has by the same construction cPis b, = b,, which 
yields (~y~“)~ = 1. But this implies m = 0 (mod q - 1). Therefore, 
no two codewords in V are p-equivalent, and hence V is a disjoint 
union. Therefore, since V(j) is a subspace of dimension k + 1 - j 
for j = 1,2,. . :, N, one obtains 

IVI = IV(l)l + IV4 + a.. + IV(N)1 
= qk + qk-l +. . . + q”-W-l) 
= (qk+l - qk+l-N)/(q - 1). 

To find the condition for equality in (3.9), consider the following: 
For any i,(E P) relatively prime to q - 1 and for any nonzero 
b,, if xi, # 0, then there is some m such that oism~;, = b,. 
Therefore, for any z E E” such that x;, # 0 for i, E P, vector z 
must be p-equivalent to some vector in V. This implies that if there 
is some z which has the maximum period q - 1 and which is not 
p-equivalent to any codeword in V, then one must have that 2; = 0 
for all i E P. In this case, the period of z is q - 1, if and only if 
there exists some subset Q’ of Q such that the lcm of the pi’s for 
i E Q’ is q - 1. 0 

It is easy to see that the term qk+’ on the right sides of both 
(3.9) and (2.4) becomes more dominant as q gets larger for fixed k. 
Indeed, the two expressions have values which are of the same order 
of magnitude even for small values of q. Moreover, these values are 
exactly the same for some k between 0 and q - 2. 

To see this, reconsider Example 2.1 where q - 1 = 63 = 32 . 7. 
In this case, IE”I = IV\ for the values of k from 1 to 6. For k = 7 
the values of I E”I and (VI are different for the first time. But these 
values have the order of 647 N 4.4 x 1012. Next, it can be verified 
that [VI < IE”) for ‘7 < k 5 61. Therefore, the above construction 
provides not only a “reasonably good” lower bound on I E” 1, but also 
it gives the exact value of (E”( for some integer k. The following 
corollary gives all the integer k for which (E”] = [VI. 

Corollary 3.2: Consider the code E” defined earlier and V 
which is constructed according to the steps leading to (3.8). For 
any prime power q > 2, there exists a number B(q) between 1 
and q-2 such that IE”I = IV1 for 1 < Ic I B(q) and IE”I > [VI 
for L > B(q). Furthermore, B(q) is explicitly given as follows: 
(1) If q - 1 is divisible by only one prime, then 8(q) = q - 2. 
(2) If q - 1 is divisible by at least two distinct primes, then B(q) 
is one less than the second smallest prime factor of q - 1. 

Proof: It is sufficient to prove (2) since (1) is exactly the case 
covered by Corollary 2.1. Let q - 1 = aSbtM where a and b are the 
smallest and the second smallest prime factors of q - 1, respectively, 
for s 2 1 and t 2 1 and where M = 1 or M contains only prime 
factors larger than b. Then, any integer i less than b, which is not 
relatively prime to q - 1, must be a multiple of a. For any such i 
one has 

asbtM a”b’M - = aS-“btM pi = (i,asbtM) = au 

where u cannot be zero. Therefore, the lcm of any such p; can never 
be q - 1. This proves that JVJ = JE”] for 1 5 k 2 b - 1. If 
b 5 k 5 q - 2, then 

asbtM 
pb 2 (b@bfj,f) = a”bt-rM and 

aSbtM 
pa = (a,asbtM) = 

aSelbtM. 

Hence, the lcm of p, and pb is q - 1. Since both a and b are not 
relatively prime to q - 1, this proves that (V( < IE”I for k 2 b. q 

Example 3.2: Let q = 7. In this case, B(7) = 3 - 1 = 2 and 
Corollary 3.2 says IE”I = JVJ for k = 1,2. Take k = 2. The 
primitive roots of the integers (mod 7) are 3 and 5. Choose cy = 3. 
Then code E has q(“+‘) = 73 = 343 codewords, IE’I = 70, and 
(E”( = IV/( = 49. Table II shows both codes E’ and E” explicitly for 
this example where E” is constructed from V = V(1) = {zlxr = 
bl = 1). Since k = 2, one has po = 1, pr = 6, and pa = 3. Thus 
code E” does not contain any representatives from the classes of 
period 2. 
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TABLE II 
WHEN q = 7 AND k = 2 (IN EXAMPLE 3.2) CODE E’ CONSISTS OF ALL OF THE CODEWORDS. CODE E” CONSISTS ONLY OF THOSE HAVING PERIOD 6 

Classes of period 1: 
(000000) (111111) (222222) (333333) (444444) (555555) (666666) 

Classes of period 3: 
(241241) (352352) (463463) (504504) (615615) (026026) (130130) 
(653653) (064064) (105105) (216216) (320320) (431431) (542542) 

Classes of period 6 (Nonperiodic classes): 
(326451) (430562) (541603) 
(560622) (601033) (012144) 
(031163) (142204) (253315) 
(202334) (313445) (424556) 
(443505) (554616) (665020) 
(614046) (025150) (136261) 
(155210) (266321) (300432) 

(652014) (063125) (104236) (215340) 
(123255) (234366) (345400) (456511) 
(364426) (405530) (516641) (620052) 
(535660) (646001) (050112) (161223) 
(006131) (110242) (221353) (332464) 
(240302) (351413) (462524) (503635) 
(411543) (522654) (633065) (044106) 

Example 3.3: Let q = 17 and q - 1 = 16 = 24, then for any k 
from 1 to 14, Q contains all of the even integers from 0 to k. Hence, 
for any i E Q, p; = 24/(i,24) = 2” for some s < 4. Also the 
1.c.m. of such pi’s can never equal 24. Therefore, IE”( = IV1 for 
all integers k from 1 to 15. 

IV. CONCLUSION 

Two simpler constructions than the one leading to (3.8) were found 
recently which give a slightly smaller number of codewords than V 
in (3.8). N. Q. A, L. Gyijrfi and J. L. Massey constructed a code (see 
[ll, Theorem 21) which is precisely V(1) in (3.8) with br = 1. Note 
that IV(l)] = q’, and hence & = (q-qleN)/(q- 1). Therefore, 
IV1 = IV(l)\ for N = 1, and IV(l)] < IV\ < IV(l)(q/(q - 1) for 
N > 1. This implies that IV( 1)1 and /VI are asymtotically equal. 

We remark further that I. Vajda and G. Einarsson [lo] made use 
in a frequency-hopping scheme of the precise form of set V(1) with 
k + 1 = 3 and br = 1 so that V(1) = {z E E]z = caea + er + 
xaez} where 20 is the message and ~2 is the user’s address. As a 
consequence, they obtained a desirable resynchronization property. 
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