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and

Im

x2T

e(f(x)) � (D � 1) q=2:

This leads to minor improvements in (4)–(6) in the coefficient of the
term arising from the casek = 0.

ForP (m; 2) and the small set of Kasami sequences of lengthL�1
we have approximately equal maximum even correlation. The Kasami
set has considerably fewer sequences, however, the best known upper
bound (see [7]) for their maximum aperiodic correlation has6

p
2=�

as the coefficient of
p
q ln (4L=�) where we have8=�.
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New Construction for Families of Binary Sequences
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Abstract—In this correspondence, we present a construction, in a closed
form, for an optimal family of 2

m binary sequences of period22m � 1

with respect to Welch’s bound, whenever there exists a balanced binary
sequence of period2m � 1 with ideal autocorrelation property using the
trace function. This construction enables us to reinterpret a small set of
Kasami and No sequences as a family constructed fromm-sequences. New
optimal families of binary sequences are constructed from the Legendre
sequences of Mersenne prime period, Hall’s sextic residue sequences, and
miscellaneous sequences of unknown type. In addition, we enumerate the
number of distinct families of binary sequences, which are constructed
from a given binary sequence by this method.

Index Terms—Kasami sequences, Legendre sequences, No sequences,
optimal correlation property, signature sequences.

I. INTRODUCTION

Code-division multiple access (CDMA) systems use pseudonoise
binary sequences as signature sequences, and several spread-spectrum
communication systems also use them as spreading codes for low
probability of intercept [18], [20]. Desirable characteristics of a family
of binary sequences for such applications include long-period, low
out-of-phase autocorrelation values, low crosscorrelation values, low
nontrivial partial-period correlation values, large linear span, balance
of symbols, large family size, and ease of implementation.

A binary (0 or 1) sequencefb(t); t = 0; 1; � � � ; N �1g of period
N = 2

n�1 is calledbalancedif the number of1’s is one more than
the number of0’s [8]. It is said to have theideal autocorrelation
property if its periodic autocorrelation functionR(�) is given by

R(�) =
N; for � � 0 modN

�1; for � 6� 0 modN

whereR(�) is defined as

R(�) =

N�1

t=0

(�1)b(t+�)+b(t)

and t+ � is computed moduloN . Note thatR(�) is the number of
agreements minus the number of disagreements betweenfb(t)g and
fb(t+ �)g ast runs from0 to N � 1 [7], [8], [21]. It is well known
that the ideal autocorrelation property implies the balance property.

Let fb(t)g andfc(t)g be two binary sequences of periodN . Two
sequencesfb(t)g and fc(t)g are said to becyclically equivalent
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if there exists an integer� such thatc(t) = b(t + �) for all t.
Otherwise, they are said to becyclically distinct. For an integerr,
the sequencefc(t)g is called thedecimationby r of the sequence
fb(t)g if c(t) = b(rt) for any integert. It is easily checked that the
period offc(t) = b(rt)g is given byN divided bygcd (r; N). It is
also well known that if a sequencefb(t)g of periodN has the ideal
autocorrelation property, so does its decimationfb(rt)g by r, wherer
is an integer relatively prime toN . Two sequencesfb(t)g andfc(t)g
are said to beequivalentif there are some integersr and� such that
c(t+�) = b(rt) for all t. They are said to beinequivalent, otherwise.

Consider a set ofJ binary sequences, each with periodN , denoted
by

fv
(j)

(t); t = 0; 1; � � � ; N � 1g; j = 1; 2; � � � ; J:

The periodic crosscorrelationRjk(�) at shift � between two se-
quencesfv(j)(t)g andfv(k)(t)g from this collection is defined as

Rjk(�) =

N�1

t=0

(�1)
v (t+�)+v (t)

:

The maximum out-of-phase periodic autocorrelation magnitudeRA

for this signal set is defined as

RA = max
j

max
0<�<N

jRjj(�)j

and the maximum crosscorrelation magnitudeRC between sequences
in this set is given by

RC = max
j 6=k

max
0��<N

jRjk(� )j:

The criterion for signal design is to minimize

Rmax = max (RA; RC):

In signal design, the Welch bound and the Sidelnikov bound are
used to test the optimality of sequence sets. Some of well-known
optimal families of binary sequences include Gold sequences [6],
Kasami sequences [18], [20], bent sequences [12], [20], and No
sequences [15]. Gold sequences form an optimal set with respect
to Sidelnikov’s bound [19] which states that for any set ofN or
more binary sequences of periodN

Rmax > (2N � 2)
1=2

:

The small set of Kasami sequences is an optimal collection of binary
sequences with respect to Welch’s bound [22], which implies that

Rmax � 1 + 2
n=2

when it is applied to a set of2n=2 sequences of periodN = 2n � 1

for an even integern. Bent and No sequences also form an optimal
set with respect to Welch’s bound, respectively, but they have larger
linear spans than Gold sequences and Kasami sequences.

In this correspondence, we show that if a binary sequence of period
2m � 1 in a trace expression has the ideal autocorrelation property,
it can be used to construct, in a closed form, a family of2m binary
sequences of period22m�1 with optimal correlation with respect to
Welch’s bound. This construction method enables us to reinterpret the
small set of Kasami sequences as well as the No sequences as a family
constructed from them-sequences. New optimal families of binary
sequences are constructed from the Legendre sequences of Mersenne
prime period, Hall’s sextic residue sequences, and miscellaneous
sequences of unknown type. In addition, we enumerate the number
of distinct families of binary sequences, which are constructed from
a given binary sequence by this method.

This correspondence is organized as follows. In Section II, we
present the main results to construct an optimal family of binary

sequences with respect to Welch’s bound. In Section III, the small
set of Kasami sequences and the No sequences are reinterpreted as
a family constructed from them-sequences. New optimal families
of binary sequences are constructed from the Legendre sequences of
Mersenne prime period in Section IV. Hall’s sextic residue sequences
and miscellaneous sequences of unknown type are also considered in
Section IV.

II. CONSTRUCTION OF AFAMILY OF BINARY SEQUENCES

WITH OPTIMAL CORRELATION

Let q be a prime power andFq be the finite field withq elements.
Let n = em > 1 for some positive integerse andm. Then the trace
functiontrnm(�) from F2 to its subfieldF2 is a mapping [10], [11]
given by

tr
n
m (x) =

e�1

i=0

x
2

:

No et al. [17] presented a closed-form expression of binary se-
quences of longer period with ideal autocorrelation property in a trace
representation, if a given binary sequence with ideal autocorrelation
property is described using the trace function. The idea of extension
in [17] will be helpful for our further discussion, so it is quoted
without proof in the following theorem.

Theorem 1 [17]: Letm andn be positive integers such thatm jn.
Let � be a primitive element ofF2 and set� = �T where
T = (2n�1)=(2m�1). Assume that for an index setI, the sequence
fb(t1); t1 = 0; 1; � � � ; M � 1g of periodM = 2m � 1 given by

b(t1) =

a2I

tr
m
1 (�

at
)

has the ideal autocorrelation property. For any integerr, 1 � r �

M � 1, relatively prime toM , the sequence

fc(t); t = 0; 1; � � � ; N � 1g

of periodN = 2n � 1 defined by

c(t) =

a2I

tr
m
1 ([tr

n
m(�

t
)]
ar
)

also has the ideal autocorrelation property.
Based on the idea of extension in Theorem 1, we will provide a

method to construct an optimal family of2m binary sequences of
period 22m � 1 from a given binary sequence of period2m � 1

with ideal autocorrelation property. Throughout the correspondence,
we use the following notations. Letm and n be positive integers
such thatm jn. Let � be a primitive element inF2 and set
� = �(2 �1)=(2 �1). Note that� is primitive in F2 . From now
on, we assume that the sequencefb(t1); t1 = 0; 1; � � � ; M � 1g of
periodM = 2m � 1 given by

b(t1) =

a2I

tr
m
1 (�

at
) (1)

has the ideal autocorrelation property for an index setI.
Theorem 2: Let n = 2m, and letfs(j)(t)g be the sequence given

by

s
(j)

(t) =

a2I

tr
m
1 ([tr

n
m (�

2t
) + j�

t
]
ar
); for j 2 F2

where r, 1 � r � M � 1, is an integer relatively prime to
M = 2m � 1, and the index setI is in (1). Define the familyF
of 2m binary sequences of periodN = 2n � 1 as

F = ffs
(j)

(t); t = 0; 1; � � � ; N � 1g j j = 1; 2; � � � ; 2
m
g:
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Then the familyF is an optimal set of2m binary sequences of period
N with respect to Welch’s bound. Furthermore,Rij(�) takes only a
value�1, 2m � 1, or �2m � 1 for any i, j, and � except for the
case wherei = j and � � 0 (modN):

Proof: We will show that the possible values ofRij(�) are�1,
2m�1, or�2m�1 for anyi, j, and� except for the case wherei = j

and� � 0 (modN): Let T = 2m + 1. Sincegcd (2m � 1; T ) = 1,
any integert, 0 � t � 22m � 2, can be uniquely written as

t = t1T + t2(2
m
� 1); 0 � t1 � 2

m
� 2; 0 � t2 � 2

m
:

Then each sequencefs(i)(t); t = 0; 1; � � � ; 2n � 2g becomes

s
(i)
(t) =

a2I

tr
m
1 [tr

n
m (�

2t T+2t f2 �1g
)

+ i�
t T+t (2 �1)

]
ar

=
a2I

tr
m
1 f�

2art
[tr

n
m (�

2t f2 �1g
) + i]

ar
g

since�2t T 2 F2 and�T = �2. For short notation, we define

f(i; t2) = tr
n
m [�

2t (2 �1)
] + i:

Then we have

s
(i)
(t) =

a2I

tr
m
1 f�

2art
[f(i; t2)]

ar
g:

Similarly, we have

s
(j)
(t + �) =

a2I

tr
m
1 f�

2ar(t +� )
[f(j ; t2 + �2)]

ar
g

where� , 0 � � � 22m � 2, is also uniquely written as

� = �1T + �2(2
m
� 1); 0 � �1 � 2

m
� 2; 0 � �2 � 2

m
:

Thus we get the equation at the bottom of this page. Note that the
inner sum

2 �2

t =0

(�1)
tr (� ([f( ; t )] +[� f( ; t +� )] ))

yields 2m � 1 when

f(i; t2) = �
2�

f(j ; t2 + �2):

When

f(i; t2) 6= �
2�

f(j ; t2 + �2)

we claim that the inner sum is�1. If either f(i; t2) = 0 or
f(j ; t2 + �2) = 0, the exponent to(�1) in the inner sum is
essentially a shift of the sequencefb(2rt1)g. Sincegcd (2r; M) = 1,
it is obvious that the sequencefb(2rt1)g is balanced and has the
ideal autocorrelation property. This implies that the inner sum gives
�1. On the other hand, iff(i; t2) 6= 0 and f(j ; t2 + �2) 6= 0,
the inner sum is the autocorrelation of the sequencefb(2rt1)g at
a nonzero shift(modN), so it is�1 by the assumption. Thus the
inner sum always yields�1 if

f(i; t2) 6= �
2�

f(j ; t2 + �2):

Therefore, it is sufficient to find the size of the set of�2’s such that
the inner sum gives the value2m�1 in order to computeRij(�). Let

� = ft2j0 � t2 � 2
m
; f(i; t2) = �

2�
f(j ; t2 + �2)g:

Then we have

Rij(�) = (2
m
� 1) � j�j+ (�1) � (2

m
+ 1� j�j)

= 2
m
j�j � (2

m
+ 1): (2)

By definingx = �2t (2 �1) andu = �2� (2 �1), we have

j�j = jfxjx + x
2

+ i = �
2�

(ux+ u
2

x
2

+ j)gj:

Note thatx 2 F2 nf0g andx2 = x, so we get

x
2

= �
2t (2 �1)�2

= �
�2t (2 �1)

= x
�1

:

Similarly, we haveu2 = u�1. Thus

j�j = jfxjx + x
�1

+ i = �
2�

(ux+ (ux)
�1

+ j)gj

= jfxjx
2
+ 1 + ix = �

2�
(ux

2
+ u

�1
+ jx)gj:

The degree of the polynomial inx is at most2, which meansj�j � 2.
Hence we conclude that

Rij(�) 2 f�2
m
� 1; �1; 2

m
� 1g

from (2).
Theorem 3: Let k = 2n, and let be a primitive element ofF2 .

Set� = (2 �1)=(2 �1) and� = (2 �1)=(2 �1). Let fs(j)(t)g be
the sequence given by

s
(j)
(t) =

a2I

tr
m
1 ([tr

n
m ([tr

k
n (

2t
) + �j�

t
]
u
)]
ar
)

for �j 2 F2 and the index setI in (1), wherer, 1 � r �M � 1, is
an integer relatively prime toM = 2m � 1, andu, 1 � u � N � 1,
is an integer relatively prime toN = 2n � 1. Define the familyF
of 2n binary sequences of periodK = 2k � 1 as

F = ffs
(j)
(t); t = 0; 1; � � � ; K � 1g j j = 1; 2; � � � ; 2

n
g:

Then the familyF is an optimal set of2n binary sequences of period
K with respect to Welch’s bound, andRij(�) takes only a value�1,
2n � 1, or �2n � 1 for any i, j, and � except for the case where
i = j and � � 0 (modK).

Proof: By Theorem 1, the sequencefb(t1)g in (1) can be
extended to a sequencefc(t2); t2 = 0; 1; � � � ; N � 1g of period
N = 2n � 1 with ideal autocorrelation property given by

c(t2) =
a2I

tr
m
1 ([tr

n
m (�

t
)]
ar
):

Let T =(2k�1)=(2n�1). Sincegcd (2n�1; T )=1, any integert,
0 � t � 2k � 2, can be uniquely written as

t = t2T + t3(2
n
� 1); 0 � t2 � 2

n
� 2; 0 � t3 � 2

n
:

Rij(�) =

N�1

t=0

(�1)
s (t)+s (t+�)

=

2

t =0

2 �2

t =0

(�1)
tr (� ([f( ; t )] +[� f( ; t +� )] ))

:
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Then each sequencefs(j)(t)g becomes

s
(j)

(t) =

a2I

tr
m
1 [tr

n
m ([tr

k
n (

2t T+2t (2 �1)
)

+ �j�
t T+t (2 �1)

]
u
)]
ar

=

a2I

tr
m
1 ([tr

n
m (�

2ut
[tr

k
n (

2t (2 �1)
) + �j ]

u
)]
ar
)

since2t T 2 F2 and�T = �2. For short notation, we define

f(�j ; t3) = tr
k
n (

2t (2 �1)
) + �j :

Then we have

s
(j)

(t) =

a2I

tr
m
1 ([tr

n
m (�

2ut
[f(�j ; t3)]

u
)]
ar
):

Note that

s
(j)

(t) =
0; if f(�j ; t3) = 0

c(2u(t2 + l)); if f(�j ; t3) = �2l.

Sincefc(2ut2); t2 = 0; 1; � � � ; 2n � 2g is the decimation by2u of
fc(t2)g, it also has the ideal autocorrelation property. Hence, similar
arguments as in the proof of Theorem 2 complete the proof.

Remark 4: The family F of sequencesfs(j)(t)g in Theorem 3
can be obtained by applying Theorem 1 tofb(t1)g in (1) and then
Theorem 2. As a first step,fb(t1)g can be extended to a sequence
fc(t2); t2 = 0; 1; � � � ; N � 1g of periodN = 2n � 1 with ideal
autocorrelation property, defined by

c(t2) =

a2I

tr
m
1 ([tr

n
m (�

t
)]
ar
)

where r, 1 � r � M � 1, is an integer relatively prime toM .
Writing each trace term inc(t2) as

tr
m
1 ([tr

n
m (�

t
)]
ar
) =

i2J(a)

tr
n
1 (�

it
) (3)

for some index setJ(a), the sequencefc(t2)g can be expressed as

c(t2) =

a2I i2J(a)

tr
n
1 (�

it
):

Applying Theorem 2 tofc(t2)g, we have a family

F = ffv
(j)

(t)g j j = 1; 2; � � � ; 2
n
g

given by

v
(j)

(t) =

a2I i2J(a)

tr
n
1 ([tr

k
n (

2t
) + �j�

t
]
iu
)

for an integeru, 1 � u � N�1, relatively prime toN . On the other
hand,s(j)(t) in Theorem 3 can be expressed as

s
(j)

(t) =

a2I

tr
m
1 ([tr

n
m ([tr

k
n (

2t
) + �j�

t
]
u
)]
ar
)

=

a2I i2J(a)

tr
n
1 (([tr

k
n (

2t
) + �j�

t
]
u
)
i
)

using the relation in (3). Hence,s(j)(t) is exactly the same as
v(j)(t).

A general form fors(j)(t) in Theorem 3 can be given as follows:

s
(j)

(t) =

a2I

tr
m
1

([tr
m
m ([tr

m
m ([� � � tr

m
m ([tr

k
m (

2t
)

+ �j�
t
]
r
) � � �]

r
)]
r
)]
ar

):

Here,m = m1jm2j � � � jmd = n, andri is relatively prime to2m �1

for eachi = 1; 2; � � � ; d.

In signal design for CDMA, it is desirable to have a lot of distinct
families of binary sequences with optimal correlation for a given
period. Hence it is an interesting problem to find the number of
distinct families of binary sequences constructed from a given binary
sequence by Theorem 2.

Two families FA and FB of sequences of the same period are
said to beequivalent if each sequence inFA is a cyclic shift of
some sequence inFB , and vice versa. Otherwise, they are said to
be distinct. Furthermore, they are said to befully distinct if each
sequence inFA is cyclically distinct from every sequence inFB.

For an integerM = 2m � 1, define the cyclotomic cosetCi of an
integer i, 0 � i � M � 1, by

Ci = fj j 0 � j �M � 1;

j � i 2
l
(mod)M for some integerl � 0g:

For the sake of convenience, the cyclotomic coset representative of
Ci is often defined as the least integer inCi. It is easily checked that
eitherCi = Cj or Ci \ Cj = �. Hence the setf0; 1; � � � ; M � 1g

is partitioned into pairwise disjoint cyclotomic cosets, that is,

f0; 1; � � � ; M � 1g =
i2A

Ci

whereA is the set of all the cyclotomic coset representatives. Note
that

tr
m
1 (x

j
) = tr

m
1 (x

i
)

for any integerj 2 Ci.
For an integerr and an index setI, definerI as

rI = fjj0 � j �M � 1; j � ri (mod)M for i 2 Ig

and define the setTI of cyclotomic cosets associated withI as

TI = fCaja 2 Ig:

Let NI be the number ofr’s relatively prime toM such that
TI 6= TrI , i.e.,

NI = jfrj1 � r �M � 1; gcd (r; M) = 1; andTI 6= TrIgj: (4)

Theorem 5: Let Nfam be the number of fully distinct familiesF
of 2m binary sequences of periodN = 2n � 1 given in Theorem
2. Then we have

Nfam = NI

'(N)

n

where'(�) is the Euler’s phi function andNI is given in (4).
Proof: In order to evaluateNfam, we need to count the number

of choices for� andr. The number of choices for� is'(N)=n, since
�i and�j give the same family for anyj in the cyclotomic coset
modN containingi. If r1I = r2I, then the family associated with
r = r1 is exactly the same as the family associated withr = r2.
Thus the number of choices forr is NI , given by (4). Therefore,
Nfam = NI � '(N)=n.

III. K ASAMI SEQUENCES AND NO SEQUENCES

Let m andn be positive integers such thatn = 2m. Let � be a
primitive element ofF2 and set� = �T whereT = 2m + 1. Then
� is a primitive element ofF2 . Let fb(t1); t1 = 0; 1; � � � ;M�1g

be a binarym-sequence of periodM = 2m � 1, given by

b(t1) = tr
m
1 (�

t
):

Note that them-sequencefb(t1)g is a binary sequence with ideal
autocorrelation property. Applying Theorem 2 tofb(t1)g, we get an
optimal family F defined by

F = ffs
(j)

(t); t = 0; 1; � � � ; N � 1gjj = 1; 2; � � � ; 2
m
g (5)
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wherefs(j)(t)g is the sequence of periodN given by

s
(j)

(t) = tr
m
1 f[tr

n
m (�

2t
) + j�

t
]
r
g

for j 2 F2 . Observe that the familyF in (5) is exactly the family
of No sequences [15]. In particular, the familyF becomes the small
set of Kasami sequences whenr = 1 [14], [20]. Hence the small set
of Kasami sequences and the No sequences can be reinterpreted as
a family constructed from them-sequences. Similarly, generalized
No sequences in [13] and [14] are shown to be families constructed
from anm-sequence by applying Theorem 1 successively and then
Theorem 2.

Consider the numberNfam of fully distinct familiesF of 2m binary
sequences of periodN = 2

n�1 constructed from anm-sequence by
Theorem 2. SinceI = f1g, it is easy to check thatNI = '(M)=m.
Hence we have

Nfam =
'(M)

m
�
'(N)

n

which is a known result [15].

IV. NEW OPTIMAL FAMILIES OF BINARY SEQUENCES

A. New Optimal Families from Legendre Sequences

Let p be an odd prime. The Legendre sequencefb(t); t = 0;

1; � � � p � 1g of period p is defined as

b(t) =

1; if t = 0mod p

0; if t is a quadratic residuemod p

1; if t is a quadratic nonresiduemod p.
(6)

It is not difficult to show thatfb(t)g has the ideal autocorrelation
property if and only ifp = 3(mod4) [3], [8]. Recently, a trace
representation of the Legendre sequences of periodp = 2

m � 1

(called Mersenne prime) was derived as follows [16]:
Proposition 6 [16]: Let M = 2

m�1 be a prime for some integer
m � 3 and letu be a primitive element ofZM , the set of integers
modM . Then there exists a primitive element� of F2 such that

[(M�1)=2m]�1

i=0

tr
m
1 (�

u
) = 0

and the sequencefs(t); t = 0; 1; 2; � � � ; M�1g of periodM given
by

s(t) =

[(M�1)=2m]�1

i=0

tr
n
1 (�

u t
) (7)

is exactly the Legendre sequence given in (6).
Consider a decimationfs(ult)g by ul of the sequencefs(t)g given

in (7). Clearly, if l is an even integer, thenfs(ult)g is the Legendre
sequence given in (6). It is also easy to show that ifl is an odd
integer, thenfs(ult)g is the sequence given by

s(u
l
t) =

1; if t = 0modM

1; if t is a quadratic residuemodM

0; if t is a quadratic nonresiduemodM .

Since fs(ult)g has the ideal autocorrelation property regardless
of l, we will also refer to it as a Legendre sequence hereafter.
The following theorem is the consequence of Theorem 2 and Propo-
sition 6.

Theorem 7: Let m be an integer such thatM = 2
m � 1 is a

prime, and letn = 2m. Let u be a primitive element ofZM , the
set of integersmodM . Let � be a primitive element ofF2 and set
� = �T whereT = 2

m
+ 1. For an integerr, 1 � r � M � 1, let

fs(j)(t); t = 0; 1; � � � ; N�1g be the sequence of periodN = 2
n�1

given by

s
(j)

(t) =

[(M�1)=2m]�1

i=0

tr
m
1 f[tr

n
m (�

2t
) + j�

t
]
ru

g;

for j 2 F2 :

Then the familyF defined by

F = ffs
(j)

(t)gjj = 1; 2; � � � ; 2
m
g

is an optimal set of2m binary sequences of periodN = 2
n� 1 with

respect to Welch’s bound.
Consider the numberNfam of fully distinct familiesF of 2m binary

sequences of periodN = 2
n � 1 constructed from the Legendre

sequence of periodM = 2
m � 1 by Theorem 7. Since we have

I = u
2i
ji = 0; 1; � � � ;

M � 1

2m
� 1

for a primitive elementu in ZM , it is easy to check thatNI = 2.
Hence we get

Nfam = 2
'(N)

n
:

Remark 8: By Theorem 3 and Remark 4, the Legendre sequences
of Mersenne prime period2m � 1 can be used to construct optimal
families of period2k � 1, wherek is any even multiple ofm.

Example 9: Letm = 7 and thusM = 127(= 2
7�1). It is easy to

check thatu = 3 is a primitive element ofZ127. Let � be a primitive
element ofF2 . The sequencefb(t1); t1 = 0; 1; � � � ; 126g given by

b(t1) =

8

i=0

tr
7
1 (�

3 t
) =

8

i=0

tr
7
1(�

9 t
)

is the Legendre sequence of period127.
Let n = 2m = 14. Let � be a primitive element ofF2 such that

� = �129. For j 2 F2 , we define

s
(j)

(t) =

8

i=0

tr
7
1 f[tr

14
7 (�

2t
) + j�

t
]
ru

g)

wherer, 1 � r � 126, is an integer. Then the familyF defined by

F = ffs
(j)

(t); t = 0; 1; � � � ; 16382gjj = 1; 2; � � � ; 128g

is an optimal set of 128 binary sequences of period16383with respect
to Welch’s bound. Note that there are 1512 fully distinct families of
binary sequences of period16383, constructed from the Legendre
sequences of period127.

B. New Families from Hall’s Sextic Residue Sequences

Binary sequences of periodM = 2
m�1 with ideal autocorrelation

property associated with Hall’s difference set appears only whenm

is 5, 7, and17 [1], [9]. They are known as the Hall’s sextic residue
sequences. In the case thatm = 5, the Hall’s sextic residue sequences
are exactly them-sequences of period31.

Let m be one of5, 7, or 17, and setM = 2
m � 1. Let u be a

primitive element inZM , and let� be a primitive element ofF2 .
From a computer search for a trace representation of the Hall’s sextic
residue sequencefb(t1); t1 = 0; 1; � � � ; M � 1g of periodM , it is
found that it can be expressed as

b(t1) =

[(M�1)=6m]�1

i=0

tr
m
1 (�

u t
):
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Note that its decimation by any integerr also has the ideal auto-
correlation property. Hence,fb(t1)g and all of its decimations are
called the Hall’s sextic residue sequences. Applying Theorem 2 to
fb(t1)g, we have an optimal family with respect to Welch’s bound
in the following.

Theorem 10: Let n = 2m, wherem is one of5, 7, or 17, and
let u be a primitive element inZM with M = 2m � 1. Let � be a
primitive element ofF2 and set� = �T whereT = 2m + 1. For
any integerr, 1 � r � M � 1, let fs(j)(t); t = 0; 1; � � � ; N � 1g
be the sequence of periodN = 2n � 1 given by

s
(j)(t) =

[(M�1)=6m]�1

i=0

trm1 f[trnm (�2t) + j�
t]ru g;

for j 2 F2 :

Then the familyF defined by

F = ffs
(j)(t)gjj = 1; 2; � � � ; 2mg

is an optimal set of2m binary sequences of periodN = 2n� 1 with
respect to Welch’s bound.

Consider the numberNfam of fully distinct families of binary
sequences of periodN constructed from the Hall’s sextic residue
sequences of periodM by Theorem 10. Since

I = fu
6i
ji = 0; 1; � � � ; [(M � 1)=6m]� 1g

in ZM , it is easy to check thatNI = 6. Hence we have

Nfam = 6
'(N)

n
:

Remark 11: Using Theorem 3 or Remark 4, the Hall’s sextic
residue sequences of periodM = 2m � 1 can be applied to con-
struct optimal families of period2k�1, wherek is any even multiple
of m.

V. NEW OPTIMAL FAMILIES FROM

MISCELLANEOUS SEQUENCES OFUNKNOWN TYPE

To classify and construct balanced binary sequences of period
2n�1 is a very interesting problem in both theory and practice [7], [8].
Especially, the balanced binary sequences of period2n�1 with ideal
autocorrelation property find many applications in spread-spectrum
communication systems. A complete search for those sequences was
conducted for period127 by Baumert and Fredrickson [2],255 by
Cheng [4], and511 by Drier [5].

It is well known that there are sixinequivalent binary sequences
of period127 with ideal autocorrelation property: anm-sequence, a
Legendre sequence, a Hall’s sextic residue sequence, and three others
called the miscellaneous sequences of unknown type I, II, and III.
Let � be a primitive element ofF2 . Then the three miscellaneous
sequences are known to have the following trace representation by
a computer search:

i) Unknown Type I

bI(t1) = tr71 (�
t ) + tr71 (�

5t ) + tr71 (�
7t )

+ tr71 (�
11t ) + tr71 (�

31t ):

ii) Unknown Type II

bII(t1) = tr71 (�
t ) + tr71 (�

3t ) + tr71 (�
7t )

+ tr71 (�
19t ) + tr71 (�

29t ):

iii) Unknown Type III

bIII(t1) = tr71 (�
t ) + tr71 (�

9t ) + tr71 (�
13t )

where t1 runs from0 to 126.

By Theorem 2, new optimal families can be constructed from the
above sequences of unknown type. For example, consider a family
from the sequencefbIII(t1)g. Letn = 2m = 14. Let� be a primitive
element ofF2 and set� = �T whereT = 27 +1. For any integer
r, 1 � r � 126, let fs(j)(t); t = 0; 1; � � � ; N � 1g be the sequence
of periodN = 214 � 1 given by

s
(j)(t) =

a2I

tr71 f[tr
14
7 (�2t) + j�

t]arg

wherej 2 F2 andI = f1; 9; 13g. Then the familyF defined by

F = ffs
(j)(t)gjj = 1; 2; � � � ; 128g

is an optimal set of 128 binary sequences of periodN = 214�1 with
respect to Welch’s bound. It is easily checked thatNI = '(127)=7 =
18. Hence we haveNfam = 18'(214 � 1)=14 = 13608 optimal
families from a binary sequence of each miscellaneous type.

At period 255, it is found that there are fourinequivalentbinary
sequences with ideal autocorrelation property: anm-sequence, a
GMW sequence, and two others of unknown type. New optimal
families can be constructed from a binary sequence of each unknown
type. Note thatNI = '(255)=8 = 16 in this case.

At period 511, there are fiveinequivalentbinary sequences with
ideal autocorrelation property: anm-sequence, a GMW sequence,
and three others of unknown type. New optimal families can be
constructed from a binary sequence of each unknown type. Note that
NI = '(511)=9 = 48 in this case.

In the case of period1023, a computer search found that there
is at least one binary sequencefb(t1); t1 = 0; 1; � � � ; 1022g with
ideal autocorrelation property, which isinequivalentto any of known
binary sequences such as them-sequences, the GMW sequences, and
the extensions of the Legendre sequences. It is given by

b(t1) = tr101 (�t ) + tr101 (�9t ) + tr101 (�57t )

+ tr101 (�73t ) + tr101 (�121t )

where� is a primitive element ofF2 . Hence, a new optimal family
of 1024 binary sequences of period220 � 1 can be constructed from
the sequencefb(t1)g described above.

As in the cases of Legendre sequences and Hall’s sextic residue
sequences, miscellaneous sequences of unknown type of period
M = 2m � 1 can be used to construct optimal families of period
2k � 1, wherek is any even multiple ofm, by applying Theorem
3 or Remark 4.
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Is Code Equivalence Easy to Decide?

Erez Petrank and Ron M. Roth,Member, IEEE

Abstract—We study the computational difficulty of deciding whether
two matrices generate equivalent linear codes, i.e., codes that consist of the
same codewords up to a fixed permutation on the codeword coordinates.
We call this problem Code Equivalence. Using techniques from the area
of interactive proofs, we show on the one hand, that under the assumption
that the polynomial-time hierarchy does not collapse, Code Equivanence
is not NP-complete. On the other hand, we present a polynomial-time
reduction from the Graph Isomorphism problem to Code Equivalence.
Thus if one could find an efficient (i.e., polynomial-time) algorithm for
Code Equivalence, then one could settle the long-standing problem of
determining whether there is an efficient algorithm for solving Graph
Isomorphism.

Index Terms—Code Equivalence, Graph Isomorphism, interactive
proofs, polynomial hierarchy.

I. INTRODUCTION

Let F be a finite field and letG1 andG2 be generator matrices
of two linear codesC1 andC2 overF: We say thatG1 andG2 are
code-equivalent, denotedG1 � G2, if the setsC1 andC2 are the
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same, up to a fixed permutation on the coordinates of the codewords
of C1: In other words,G1 � G2 if and only if both matrices have
the same orderk � n, and there exist ann � n permutation matrix
P and a nonsingulark� k matrix S overF such thatG1 = SG2P:

The problem of deciding whether two generator matrices are code-
equivalent will be referred to as theCode Equivalenceproblem.

The purpose of this correspondence is to study the computational
difficulty of the Code Equivalence problem. As one application of
a related problem, we mention the public-key cryptosystems due to
McEliece [9] and Niederreiter [11]. Recall that analternant codeover
GF(q) is defined by a parity-check matrix of the form[yj�ij ]

r�1;n�1

i=0;j=0
,

where the�j ’s are distinct elements in GF(qm) and theyj ’s are
nonzero elements in GF(qm) [8, ch. 12]. Goppa codes are special
cases of alternant codes where certain restrictions are imposed on the
valuesyj ’s, and generalized Reed–Solomon codes are special cases
of alternant codes wherem = 1: The mentioned cryptosystems are
based on the assumption that it is difficult to identify the values
�j and yj out of an arbitrary generator matrix (or parity-check
matrix) of an alternant code. Namely, it is difficult to obtain a code-
equivalent matrix of the form[yj�ij ]

r�1;n�1

i=0;j=0
: On the other hand, as

shown in [12], it is easy to extract the values�j and yj from any
systematic generator matrix of a generalized Reed–Solomon code;
hence, cryptosystems based on such a code are breakable. This was
pointed out explicitly by Sidelnikov and Shestakov in [13]. For related
work, see also the references cited in [10, p. 317].

The significance of the Code Equivalence problem can also be
exhibited through the results of Kasami, Lin, and Peterson [6],
and Kolesnik and Mironchikov [7], who showed that Reed–
Muller codes are equivalent to subcodes of extended Bose–
Chaudhuri–Hocquenghem (BCH) codes. Thus it should be interesting
to design an efficient algorithm that decides whether two codes are
indeed equivalent, and thus infer from the properties that arise from
one code representation to the other.

On the positive side, we first show that the Code Equivalence
problem is unlikely to be NP-complete. The proof of this assertion
relies on techniques developed in the field ofinteractive proofs,
which we summarize in Section II. In Section III, we invoke results
of Goldwasser, Micali, and Rackoff [4], Goldreich, Micali, and
Wigderson [3], Goldwasser and Sipser [5], and Boppana, Håstad,
and Zachos [2], to show that if Code Equivalence is NP-complete,
then the polynomial hierarchy collapses.

Yet, we do state also a negative result, namely, that Code Equiv-
alence is also unlikely to be too easy. We do this by relating Code
Equivalence to theGraph Isomorphismproblem. LetG1 = (V;E1)

and G2 = (V;E2) be two undirected graphs with the same set
of vertices V , and with sets of edgesE1 and E2, respectively.
We say thatG1 is isomorphic toG2 if there exists a permutation
(isomorphism)�: V ! V such thatfu; vg 2 E1 if and only
if f�(u); �(v)g 2 E2 (we assume here that the graphs have no
parallel edges; if they do, thenE1 andE2 are multisets, in which
case isomorphism requires equality of the multiplicities offu; vg

and f�(u); �(v)g in E1 and E2, respectively). The problem of
deciding efficiently (i.e., in polynomial time) whether two graphs are
isomorphic is a notoriously open question in Computer Science. The
problem has been studied extensively in recent decades, but the state
of the art is that there is no known efficient algorithm for determining
whether two given graphs are isomorphic.

In Section IV, we show a polynomial-time reduction from Graph
Isomorphism to Code Equivalence. This implies that presenting an
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