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Trace Representation of Legendre 
Sequences of Mersenne Prime Period 

Jong-Seon No, Hwan-Keun Lee, Habong Chung, Member, IEEE, 
Hong-Yeop Song, Member, IEEE, and 

Kyeongcheol Yang, Member, IEEE 

Abstract-In this correspondence, it is shown that Legendre sequences 
of period p can be explicitly represented using the trace function defined 
on the finite field with 2n elements, whenever p = 2n - 1 is prime for 
some R 2 3. 

Index Terms-Legendre sequences, m-sequences, two-level autocorre- 
lation property. 

I. INTRODUCTION 

Balanced binary sequences of period 2” - 1 [2], [3] for some 
integer n having the two-level autocorrelation function [6] find many 
applications in spread-spectrum communication systems [5]. Some of 
the well-known families of these sequences include 1) m-sequences 
of period 2” - 1 for all n = 1,2,. .; 2) GMW sequences of period 
2” - 1 for composite values of n; and 3) Legendre sequences of period 
2” - 1 whenever 2” - 1 is a prime (a so-called Mersenne prime). The 
m-sequences and the GMW sequences are best described in terms of 
the trace function over a finite field [5]. 

In fact, Legendre sequences of period p for any prime p are defined 
as 

i 

1, ift=Omodp 
b(t) = 0, if t is a quadratic residue mod p (1) 

1, if t is a quadratic nonresidue mod p 

and it is not difficult to show that b(t) for t = 0, 1,2, . . . ,p - 1 has 
the two-level autocorrelation function if and only if p = 3(mod4). 
These sequences have only been described as above, and it seems to 
be meaningful to find any simple connection between the description 
given in (1) for all primes p = 3(mod4) and the trace function over 
a finite field. 

In this correspondence, we show that, whenever 2” - 1 = p is 
prime for some 12 > 3, Legendre sequences of period 2” - 1 can 
be explicitly described using the trace function defined on the finite 
field with 2” elements. 

II. MAIN THEOREM 

For the remainder of this correspondence, we use the convention 
that 2” - 1 = p is a prime for some n 2 3, u is a primitive element 
of Z, which is the set of integers modp, F2n is the finite field with 
2” elements, and ~4’ is a primitive element of Fzn. 

Manuscript received April 11, 1996; revised June 10, 1996. This work was 
supported in part by the Korea Science and Engineering Foundation (KOSEF) 
under Grant 95 l-09 13-074-2 and in part by the Korean Ministry of Information 
and Communications. 

J.-S. No and H.-K. Lee are with the Department of Electronic Engineering, 
Konkuk University, Seoul 143-701, Korea. 

H. Chung is with the School of Electronic and Electrical Engineering, Hong- 
Ik University, Seoul 121-791, Korea. 

H.-Y. Song is with the Department of Electronic Engineering, Yonsei 
University, Seoul 120-749, Korea. 

K. Yang is with the Department of Electronic Communication Engineering, 
Hanyang University, Seoul 133-791, Korea. 

Publisher Item Identifier S 0018-9448(96)07293-S. 

The trace function try(.) is a mapping from F2n to its subfield 
F2 = (0, l} given by 

n-l 

try (x) = C 8. 
i=o 

When 2” - 1 = p is a prime, the cyclotomic coset Ct con- 
taining a nonzero t E Z, consists of 12 elements and is given 
as {t, 2t, 29,. . . ,2”-‘t} [3]. Thus there are (p - 1)/n distinct 
cyclotomic cosets modp of size n, and try (x”) is nothing but the 
sum of 2’ over i E Ct for any z E Fzn\{O, l} and any nonzero 
t E 2,. From the definition of the trace function above, it is easy 
to check that tr; (p) = try (P”) for any p E Fp [4]. Therefore, we 
conclude that tr; (xi) = try (x”) if and only if i E Ct. We also have 
that Ct consists entirely of either quadratic residues or nonresidues 
modp, since 2 is always a quadratic residue modp of the form 2” - 1 
for 7~ 2 3 [l, p. 1981. 

Since 2” - 1 = p is a prime for some 72 2 3, n must also be 
a prime and hence it is necessarily an odd integer. Therefore, we 
note that e is an even integer. It is not hard to show that if u is 
primitive in Z,, then u2 for each i from 0 to e - 1 runs through 
all the (p - 1)/n cyclotomic cosets of size n modp. Furthermore, we 

p--l 
need the following lemma saying that u n belongs to Cl for any 
primitive element ?I in 2,. 

Lemma 1: Let p = 2” - 1 be prime and u be a primitive element 
11--1 

in Z,. Then we have u n = 2” for some integer i. 
Proof: Note that 2” is a solution to xn - 1 = 0 (modp) for any 

integer i from 0 to n - 1, and there are no other solutions because 
pz2” - 1 is prime. Since (u%)” = 1 (modp), we have that 
u n must be of the form 2” for some integer i. 0 

Lemma 2: Let 2” - 1 = p be a prime for some integer n > 3 
and u be a primitive element of Z,, the set of integers modp. Then, 
either ~1’ or cyU (not both) satisfies the equation in x given by 

zz-1 
-C try (2+) = 0. 
i=O 

Proof: Let 

pl-] 
f(x) = ‘2 tr;(sUzi) = C x3 

z=o ~EQR 

where QR denotes the set of quadratic residues modp. Then 

p--l-l 

i=o JEQN 

where QN denotes the set of quadratic nonresidues modp. Therefore, 

2”--2 2n-2 

f(x) + f(x”) = c 13 = 1+ c J? = I 
j=l .I=0 

for all the nonzero elements x E F2n except for 1. Therefore, we 
have f(a) + ~(cY~) = 1 for any primitive cv in Fp This implies 
that either f(a) = 0 or f(a”) = 0. 0 

Now, we are in a position to state and prove our main theorem: 
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Main Theorem: Let p = 2” - 1 be a prime for some integer n 2 3 
and u be a primitive element of Z,, the set of integers modp. Let cy 
be a primitive element of F2n such that 

‘2 tr;” (cyU2%) = 0. 
2=0 

(3) 

Thenthesequences(t)fort=0,1,2,...,p-lofperiodpgivenby 

p--l-, 

s(t) = ‘2 - tr; (eu2it) 
z=O 

(4) 

is the Legendre sequence given in (1). 
Proof Since 2” - 1 = p > 3 is a prime, if cv E F2n is primitive, 

then a? for every j from 1 to p - 2 is also primitive. Therefore, by 
changing the name if necessary, the existence of a primitive element 
Q E F2n satisfying (3) is guaranteed by Lemma 2. This, in turn, 
gives s(l) = 0. 

Since both n and e are odd, we have try (1) = 1, and hence, 
s(0) = 1. 

If t is a quadratic residue modp, we get t = u21 for some integer 
j. In this case 

e-1 

.y(u”“) = C try (~u2(‘+‘i 

g-1 

) = C tr: (au2’) = s(l) = 0. 
t=O i=o 

This is because, as i runs from 0 to $$ - 1 in the above summations, 
both u2’ and u’(‘+~) run through the same set of cyclotomic cosets, 
consisting entirely of quadratic residues modp. 

If t is a quadratic nonresidue modp, we get t = uzJ+l for some 
integer j. In this case, similarly, we have s(t) = s(u) where u is a 
primitive element of 2,. Since 

2n-2 

s(1) + s(u) = c a3 = 1 
i=l 

we get S(U) = 1. 0 
Example: Let n = 7 and thus p = 127(= 27 - 1). It is easy 

to check that u = 3 is a primitive element in 2127. Let cy be the 
primitive element of F27 satisfying cy7 + o4 + 1 = 0. Then we have 

G-1 

C try (021Z2) = ctrI(*3Z’) = 0. 
z=o i=o 

The sequence s(t) for t from 0 to 126 given by 

s(t) = $ try (Q”~‘) = $ tr: (cv”‘“) 

is the Legendre sequence of period 127. 
Remarks: 
1) The characteristic polynomial h(z) of the Legendre sequence 

s(t) of Mersenne prime period p = 2” - 1 > 3 is 

i=o 

where ma3 (z) is the minimal polynomial of cy3 over F2, 
2) The linear span of s(t) is exactly %$ = 2%-l - 1. 

3) The sequence s(t) is invariant under the decimation by uzi, 

Ul 

PI 

[31 

141 

[51 

[61 

that is, 

s(t) = s(u2Q) 

for any integer i. 
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A Characterization of Codes with Extreme Parameters 

A. Faldum and W. Willems 

Abstract-Let C be an [n, k, d]-code over GF (4) with k 2 2. Let 
s = def (C) = n + 1 - k - d denote the defect of C. The Griesmer bound 
implies that d 5 q(s + 1). If d > 4~ and s 2 2, then using a previous 
result of Faldum and Willems, k < Q. Thus fixing s > 2 the extreme 
parameters for a code with def (C) = s are d = q(s + l), k = 4, and 
n = k + d + s - 1 = (Q + l)(s + 2) - 3. In this correspondence we 
characterize the codes with such parameters. 

Zndex Terms-Linear code, elliptic quadric surface, defect of codes, 
weight distribution. 

I. INTRODUCTION 

Let C be an [n, k, d]-code over the field GF(q) with k 2 2. 
Furthermore, let s = def (C) = n + 1 - k - d denote the defect of 
C. By the Griesmer bound 

n2 

we immediately get that d 5 q(s + 1). From now on we suppose 
that d is maximal, i.e., d = q(s + 1). 

Ifs = 0, then by the same argument as above used for the dual code 
Cl, we obtain b 5 4 - 1. For the extreme parameters n = 2q - 2, 
k = 9 - 1, and d = q, codes only exist for q = 3 and q = 4, 
by [4, ch. 11, sec. VIII, Theorem 131. Clearly, these are the ternary 
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