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Trace Representation of Legendre
Sequences of Mersenne Prime Period
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Abstract—In this correspondence, it is shown that Legendre sequences
of period p can be explicitly represented using the trace function defined
on the finite field with 2" elements, whenever p = 2" — 1 is prime for
some n > 3.

Index Terms—Legendre sequences, m-sequences, two-level autocorre-
lation property.

1. INTRODUCTION

Balanced binary sequences of period 2" — 1 [2], [3] for some
integer n having the two-level autocorrelation function [6]} find many
applications in spread-spectrum communication systems [5]. Some of
the well-known families of these sequences include 1) m-sequences
of period 2" — 1 for all n = 1,2, --+; 2) GMW sequences of period
2™ —1 for composite values of n; and 3) Legendre sequences of period
2™ —1 whenever 2" —1 is a prime (a so-called Mersenne prime). The
m-sequences and the GMW sequences are best described in terms of
the trace function over a finite field [5].

In fact, Legendre sequences of period p for any prime p are defined
as

1, ift=0modp
b(t) = ¢ 0, iftis a quadratic residue mod p ¢))
1, if ¢ is a quadratic nonresidue mod p
and it is not difficult to show that b(t) for t = 0,1,2,---,p — 1 has
the two-level autocorrelation function if and only if p = 3(mod4).
These sequences have only been described as above, and it seems to
be meaningful to find any simple connection between the description
given in (1) for all primes p = 3(mod4) and the trace function over
a finite field.

In this correspondence, we show that, whenever 2" — 1 = p is
prime for some n > 3, Legendre sequences of period 2" — 1 can
be explicitly described using the trace function defined on the finite
field with 2™ elements. :

II. MAIN THEOREM

For the remainder of this correspondence, we use the convention
that 2" — 1 = p is a prime for some n > 3, u is a primitive element
of Z, which is the set of integers modp, Fon is the finite field with
2™ elements, and « is a primitive element of Fon.
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The trace function trT(-) is a mapping from Fb~ to its subfield
F, = {0,1} given by

n—1 X
tl (2) =Y 2% o)
=0
When 2" — 1 = p is a prime, the cyclotomic coset C; con-

taining a nonzero ¢ € Z, consists of n elements and is given
as {t,2t,2%¢,.--,2" "'t} [3]. Thus there are (p — 1)/n distinct
cyclotomic cosets modp of size n, and tr} (z') is nothing but the
sum of z' over i € C; for any € F3»\{0,1} and any nonzero
t € Z,. From the definition of the trace function above, it is easy
to check that trf (3) = tr} (3?) for any 8 € Fon [4]. Therefore, we
conclude that trf (2*) = tr] (2*) if and only if i € C;. We also have
that C; consists entirely of either quadratic residues or nonresidues
mod p, since 2 is always a quadratic residue mod p of the form 2" —1
forn > 3 [1, p. 198].

Since 2" — 1 = p is a prime for some » > 3, n must also be
a prime and hence it is necessarily an odd integer. Therefore, we
note that % is an even integer. It is not hard to show that if u is
primitive in Z,, then u® for each 7 from 0 to p—;—l — 1 runs through
all the (p — 1)/n cyclotomic cosets of size n mod p. Furthermore, we
need the following lemma saying that T belongs to C'; for any
primitive element u in Z,.

Lemma 1: Let p = 2" — 1 be prime and v be a primitive element

p—1 ;

in Z,. Then we have v » = 2" for some integer ¢.

Proof: Note that 2° is a solution to 2" — 1 = 0 (mod p) for any
integer ¢ from O to n — 1, and there are no other solutions because
p = 2" — 1 is prime. Since (ug’;_l)” = 1 (modp), we have that
u®= must be of the form 2° for some integer i. O

Lemma 2: Let 2" — 1 = p be a prime for some integer n > 3
and » be a primitive element of Z,, the set of integers mod p. Then,
either a or a” (not both) satisfies the equation in z given by

p—1

2n

3 (@) =0

7=0
Proof: Let

=1 1

flz) = "Z trf (wum) = Z @’

=0 JEQR
where QR denotes the set of quadratic residues mod p. Then
2441 .
S et = Yo
=0 JEQN

where QN denotes the set of quadratic nonresidues mod p. Therefore,
2n—2 2n—g
f@)+ e = S P =14 S a =1
j=1 7=0

for all the nonzero elements x € Fy» except for 1. Therefore, we

have f(a) + f(a®) = 1 for any primitive o in Fpn. This implies

that either f(a) = 0 or f(a®) =0. |
Now, we are in a position to state and prove our main theorem:
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Main Theorem: Letp = 2™ —1 be a prime for some integer n > 3
and u be a primitive element of Z,, the set of integers mod p. Let &
be a primitive element of F»» such that

p—1

2n

3wl (@) =0 3)

=0
Then the sequence s(¢) fort = 0,1,2,---,p—1 of period p given by

p—1_ 4

2n

sy = 3 uf (™) @

1==0

is the Legendre sequence given in (1).

Proof: Since 2" —1 =p > 3isaprime, if « € Fyn is primitive,
then o’ for every j from 1 to p — 2 is also primitive. Therefore, by
changing the name if necessary, the existence of a primitive element
a € Fpn satisfying (3) is guaranteed by Lemma 2. This, in turn,
gives s(1) = 0.

Since both n and 2;71 are odd, we have trf (1) = 1, and hence,
s(0) = 1.

If ¢ is a quadratic residue mod p, we get t = u?? for some integer
7. In this case

p=1_ g p—1

2n

s = 3w @)= 3 W) = s =0

i=0 =0

This is because, as ¢ runs from O to 22_71 —1 in the above summations,
both %2 and w2*+7) run through the same set of cyclotomic cosets,
consisting entirely of quadratic residues mod p.

If t is a quadratic nonresidue modp, we get t = u>T! for some
integer j. In this case, similarly, we have s(t) = s(u) where u is a
primitive element of Z,. Since

(1) + s(u) = Z o =1

we get s(u) = 1. [

Example: Let n = 7 and thus p = 127(= 27 — 1). It is easy
to check that v = 3 is a primitive element in Z127. Let a be the
primitive element of Fy satisfying o’ + a* +1 = 0. Then we have

p—1
Bn 8

2n

Y ouf (@) =S el (@) = 0.

=0 =0

The sequence s(t) for ¢ from 0 to 126 given by

8 X 8 .
sty = (@) = 3 uj (")
=0 i=0

is the Legendre sequence of period 127.
Remarks:
1) The characteristic polynomial h(z) of the Legendre sequence
s(t) of Mersenne prime period p = 2" — 1 > 3 is

=1l 4

2n

hiz) = H m 2 (T)

=0

where m;(x) is the minimal polynomial of o’ over Fs.
2) The linear span of s(t) is exactly 251 = 2"~' — 1.

2255

3) The sequence s(t) is invariant under the decimation by u*,
that is,

s(t) = s(u*'t)

for any integer ¢.

REFERENCES

[1] D. M. Burton, Elementary Number Theory. Allyn and Bacon Inc.,
1980.

[2] S. W. Golomb, “On the classification of balanced binary sequences of
period 2™ — 1,” IEEE Trans. Inform. Theory, vol. IT-26, no. 6, pp.
730-732, Nov. 1980.

[3] ——, Shift-Register Sequences. San Francisco, CA: Holden-Day,
1967; Laguna Hills, CA: Aegean Park Press, 1982.

[4] R. Lidl and H. Niederreiter, Finite Fields of Encyclopedia of Mathe-
matics and Its Applications, vol. 20. Reading, MA: Addison-Wesley,
1983.

[51 M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread
Spectrum Communications, vol. 1. Rockville, MD: Computer Science
Press, 1985.

[6] H. Y. Song and S. W. Golomb, “On the existence of cyclic Hadamard
difference sets,” IEEE Trans. Inform. Theory, vol. 40, no. 4, pp.
1266-1268, July 1994.

A Characterization of Codes with Extreme Parameters

A. Faldum and W. Willems

Abstract—Let C be an [n, k, d]-code over GF (q) with k& > 2. Let
s = def (C) = n+1—k — d denote the defect of C'. The Griesmer bound
implies that d < g(s + 1). If d > ¢s and s > 2, then using a previous
result of Faldum and Willems, k¥ < ¢. Thus fixing s > 2 the extreme
parameters for a code with def (C) = s are d = ¢(s + 1), k = ¢, and
n=k+d+s—1=(g+1)(s+ 2) — 3. In this correspondence we
characterize the codes with such parameters.

Index Terms— Linear code, elliptic quadric surface, defect of codes,
weight distribution.

I. INTRODUCTION

Let C be an [n, k, d]-code over the field GF (¢) with k& > 2.
Furthermore, let s = def (C) = n + 1 — k — d denote the defect of
C. By the Griesmer bound

k—1 d
"2 H

we immediately get that d < g(s + 1). From now on we suppose
that d is maximal, ie., d = ¢(s + 1).

If s = 0, then by the same argument as above used for the dual code
C*, we obtain k < ¢ — 1. For the extreme parameters n = 2q — 2,
k = q¢—1, and d = ¢, codes only exist for ¢ = 3 and ¢ = 4,
by [4, ch. 11, sec. VIII, Theorem 13]. Clearly, these are the ternary
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