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Abstract

We determine the trace function representation, or equivalently, the Fourier spectral sequences of binary Jacobi sequences of
period pq, where p and q are two distinct odd primes. This includes the twin-prime sequences of period p(p + 2) whenever both
p and p + 2 are primes, corresponding to cyclic Hadamard difference sets.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

We will begin by the following definition of Jacobi sequences of period pq for two distinct odd primes p and q:

Definition 1. Let p, q be two distinct odd primes. We define a binary sequence Jp,q = {Jp,q(t)|t ≥ 0} of period pq as

Jp,q(t) =


0 t ≡ 0(mod pq)
1 t ≡ 0(mod p), t 6≡ 0(mod q)
0 t 6≡ 0(mod p), t ≡ 0(mod q)

σ

(
(

t

p
)(

t

q
)

)
(t, pq) = 1,

(1)

where σ(1) = 0 and σ(−1) = 1, and ( t
p ) is the Legendre symbol of the integer t mod p, taking the value +1 or −1

according to whether t is a quadratic residue mod p or not. It is clear that

σ

((
t

p

)(
t

q

))
= σ

(
t

p

)
+ σ

(
t

q

)
.

To study the characteristic sequence of cyclic difference sets mod p(p + 2) (which has been called ”twin-prime
cyclic Hadamard difference sets” [21,9]) whenever both p and p + 2 are prime, Kim and Song [13] have generalized
the definition of the characteristic sequences into the cases with sequences of period pq where both p and q are
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two odd primes. The minimal polynomial of these sequences was obtained in [5]. From the well-known result,
the trace representation of a Jacobi sequence can be given by

∑
i Tr(ρ(i)x i ) where ρ(i) ∈ F2n (n will be defined

later), i is a coset leader modulo N = pq , and summution is taken over a set consisting of coset leaders modulo N
for which ρ(i) 6= 0 (see [17], Exercise 8.41). The trace representation can be computed by applying the (discrete)
Fourier transform [2]. {ρ(i)} is referred to as a (Fourier) spectral sequence. In general, from the minimal polynomial
of a sequence, it is not easy to determine the spectral sequence {ρ(i)}. In this paper, we will determine the trace
representation of Jacobi sequences of period pq , i.e., the spectral sequence {ρ(i)}. As an easy consequence, we
determine the linear complexity of the sequence which was obtained earlier [5,13]. The result in this paper makes use
of the results in both [14,4].

Section 2 reviews the trace representation of quadratic residue sequences of period p. Section 3 gives the main
result with a proof. Section 4 concludes this paper.

2. Preparation

Let s = {s(t)|t ≥ 0} be a binary sequence of period N that divides 2n
− 1 for some n. Then, it is known [17,2,10]

that there exists a primitive N -th root γ of unity and a polynomial g(x) =
∑

0≤i<N ρ(i)x
i (mod x N

− 1) such that

s(t) = g(γ t ) t = 0, 1, 2, . . . .

We call the pair (g(x), γ ) a defining pair of the sequence s [4]. In the remainder of this paper, we will consider only
the case where N is either an odd prime or a product of two distinct odd primes. The relation between the sequence
s = {s(t)|t ≥ 0} and its spectral counterpart {ρ(i)|i ≥ 0} is given as

s(t) =
∑

0≤i<N

ρ(i)γ i t
⇐⇒ ρ(i) =

∑
0≤t<N

s(t)γ−i t . (2)

The RHS of (2) is referred to as the (discrete) Fourier transform of s, and the LHS of (2), its inverse formula. The
main result of this paper is to determine the spectral sequence{ρ(i)}, or equivalently the defining pair (g(x), γ ), when
s is a Jacobi sequence.

Let p be an odd prime, and Fp be the finite field with p elements. We denote by F∗p the cyclic multiplicative group

Fp \ {0}. It is well known that F∗p is a disjoint union of A0 , {x2
|x ∈ F∗p } and A1 , F∗p \ A0 of equal size (p− 1)/2.

It is also well known that A0 is a cyclic difference set with parameters (v = p, k = (p − 1)/2, λ = (p − 3)/4) [1,4,
9,11,12,14]. In the remainder of this paper, we let

A0(x) =
∑
t∈A0

x t (mod x p
− 1),

and

A1(x) =
∑
t∈A1

x t
=

∑
t∈F∗p\A0

x t (mod x p
− 1),

which are called the generating polynomials of A0 and A1, respectively. Let

A(x) =
p − 1

2
+ a0 A0(x)+ a1 A1(x) (mod x p

− 1), (3)

where

(a0, a1) =

{
(1, 0) if p ≡ ±1(mod 8)
(ω, ω2) if p ≡ ±3(mod 8),

and ω ∈ F4 \ F2 is a chosen primitive 3-rd root of unity. It is known [4] that one can always find a primitive p-th root
α of unity such that

A0(α) =


1 p ≡ +1(mod 8)
0 p ≡ −1(mod 8)
ω2 p ≡ +3(mod 8)
ω p ≡ −3(mod 8).

(4)
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For this choice of α, we have that A1(α) = 0, 1, ω, ω2 for p ≡ +1,−1,+3,−3(mod 8), respectively [4]. With A(x)
in (3) and α defined above, we have the following basic lemma.

Lemma 2 (Basic Lemma [4]). Let p be an odd prime, α be chosen by (4), and A(x) be as given in (3). Let
bp = {bp(t)|t ≥ 0} be the sequence of period p defined as

bp(t) =

{
1 t ∈ A0,

0 t ∈ Fp \ A0.

Then, (A(x), α) is a defining pair of the sequence bp.

For the sake of convenience, for any other odd prime q, we let

B(x) =
q − 1

2
+ b0 B0(x)+ b1 B1(x) (mod xq

− 1), (5)

where Bi (x) is the generating polynomial of the set Bi for i = 0, 1, B0 is the set of quadratic residues mod q, B1 is
the set of quadratic non-residues mod q, and

(b0, b1) =

{
(1, 0) if q ≡ ±1(mod 8)
(ω, ω2) if q ≡ ±3(mod 8).

Let bq = {bq(t)|t ≥ 0} be the sequence of period q defined as

bq(t) =

{
1 t ∈ B0,

0 t ∈ Fp \ B0.

Then, from Lemma 2, one can find a primitive q-th root β of unity such that (B(x), β) is a defining pair of bq . It is
the choice that gives

B0(α) =


1 p ≡ +1(mod 8)
0 p ≡ −1(mod 8)
ω2 p ≡ +3(mod 8)
ω p ≡ −3(mod 8).

(6)

In the remainder of this paper, we keep the notations Ai (x), Bi (x), A(x), B(x), which can be regarded as
polynomials over some extension of F2, and the choice ω, α and β. Also in the following, we let ep and eq be
integers mod pq such that

ep =

{
1(mod p)
0(mod q),

and eq =

{
1(mod q)
0(mod p).

Note that ep and eq are unique mod pq due to the Chinese Remainder Theorem [6].

3. Main result

We let Trn
1(x) =

∑
0≤i<n x2i

be the trace [17] of x from F2n to F2. Modulo 8, the odd primes p and q have 4
difference values, and there are 16 different cases for the pair (p, q). In the following, we group 8 of them together,
and distinguish only two cases as follows:

CASE 1: (p, q) ∈ {(+1,+1), (+1,−1), (−1,+1), (−1,−1),
(+3,+3), (+3,−3), (−3,+3), (−3,−3)}; and

CASE 2: (p, q) ∈ {(+1,+3), (+1,−3), (−1,+3), (−1,−3), (+3,+1), (+3,−1), (−3,+1), (−3,−1)}.

This section is entirely devoted to the proof of the main theorem given as follows:

Theorem 3 (Main Theorem). For any two distinct odd primes p and q, there exist α, β and ω which satisfy the
conditions (4) and (6), respectively, where α is a p-th primitive root of unity, β is a q-th primitive root of unity
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and ω is a 3-rd primitive root of unity. Recall the choice of all the notations discussed so far. Define a polynomial
J (x)(mod x pq

− 1) as follows:

J (x) =
q − 1

2

∑
1≤i<p

xepi
+

p + 1
2

∑
1≤ j<q

xeq j

+


∑

i=0,1

Ai (x
ep )Bi (x

eq ) for CASE 1, and

ω
∑

i=0,1

Ai (x
ep )Bi (x

eq )+ ω2
∑

i=0,1

Ai (x
ep )Bi+1(x

eq ) for CASE 2,

where B2(x) = B0(x). Then, (i) the Jacobi sequence Jp,q = {Jp,q(t)|t ≥ 0} in Definition 1 has a defining pair
(J (x), αβ), and (ii) it has a trace representation as follows:

Jp,q(t) =
q − 1

2

∑
0≤i<cp

Trm
1 (α

ui t )+
p + 1

2

∑
0≤ j<cq

Trn
1(β

v j t )

+



∑
0≤i<cp

0≤ j<cq d
i≡ j (mod 2)

TrM
1

(
(αui

βv
j
)t
)

for CASE 1, and

∑
0≤i<cp

0≤ j<cq d
i≡ j (mod 2)

TrM
1

(
ω(αui

βv
j
)t
)
+

∑
0≤i<cp

0≤ j<cq d
i 6≡ j (mod 2)

TrM
1

(
ω2(αui

βv
j
)t
)

for CASE 2,

where m and n are orders of 2 mod p and q, respectively, cp =
p−1
m , cq =

q−1
n , d = (m, n) is the gcd of m and n,

M = mn/d, and finally, u and v are any given generators of F∗p and F∗q , respectively.

Before we start the proof of the main theorem, we observe the following (see [5,13]):

Remark 4. The linear complexity L S(Jp,q) of Jp,q is given from the main theorem as follows:

L S(Jp,q) = (p − 1)ε(
q − 1

2
)+ (q − 1)ε(

p + 1
2

)+

{
(p − 1)(q − 1)

2
CASE 1,

(p − 1)(q − 1) CASE 2,

where ε(a) = 1, 0 for a ≡ 1, 0(mod 2), respectively.

Now, we begin the proof of the main theorem.

Definition 5. Let T be an odd integer. A δ-sequence of period T , which will be denoted by δT = {δT (t)|t ≥ 0}, is
defined as

δT (t) =

{
1 t ≡ 0(mod T )
0 otherwise.

We also define

∆T (x) =
∑

0≤i<T

x i .

It is clear that (∆T (x), γ ) is a defining pair of the δ-sequence δT , where γ is any given T -th primitive root of unity.

Definition 6. Given a sequence s = {s(t)|t ≥ 0}, the λ-jump sequence of s, which will be denoted by s[λ] =
{s[λ](t)|t ≥ 0}, is defined as

s[λ](t) =

{
s(t) t ≡ 0 (mod λ)
0 otherwise.
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Table 1
Proof of Lemma 7

Sequences t ≡ 0(pq) t ≡ 0(p) t 6≡ 0(q) (t, pq) = 1
t 6≡ 0(p) t ≡ 0(q)

bp 0 0 σ
((

t
p

))
σ
((

t
p

))
bq 0 σ

((
t
q

))
0 σ

((
t
q

))
b[q]p 0 0 σ

((
t
p

))
0

b[p]q 0 σ
((

t
q

))
0 0

δp 1 1 0 0
δpq 1 0 0 0

SUM = Jp,q 0 1 0 σ
((

t
p

) (
t
q

))

Table 2
Defining pair of each component sequence in Lemma 8

Sequences Defining pair

bp (A(xep ), αβ)

bq (B(xeq ), αβ)

b[q]p (A(xep )∆q (xeq ), αβ)

b[p]q (B(xeq )∆p(xep ), αβ)

δp (∆p(xep ), αβ)

δpq (∆pq (x), αβ)

It is clear that the λ-jump sequence of s is obtained by multiplying s by δλ term-by-term. That is,

s[λ](t) = s(t)δλ(t), ∀t. (7)

Lemma 7.

Jp,q = bp + bq + b[q]p + b[p]q + δp + δpq .

Proof. It is straightforward to check. See Table 1. �

Lemma 8. The defining pairs of six component sequences of Jp,q in Lemma 7 are given in Table 2.

Proof. Note that

(αβ)ep = α, (αβ)eq = β.

Now, it is straightforward to check the following:

A((αβ)ep t ) = A(αt ) = bp(t), ∀t.

B((αβ)eq t ) = B(β t ) = bq(t), ∀t.

A((αβ)ep t )∆q((αβ)
eq t ) = A(αt )∆q(β

t ) = bp(t)δq(t) = b[q]p (t), ∀t,

B((αβ)eq t )∆p((αβ)
ep t ) = B(β t )∆p(α

t ) = bq(t)δp(t) = b[p]q (t), ∀t,

where, we use the relation in (7). The remaining two cases can be done similarly. �

Lemma 9. If f (x) ≡ g(x)(mod x p
− 1) then

f (xep ) ≡ g(xep )(mod x pq
− 1).
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Proof.

f (x) ≡ g(x)(mod x p
− 1)

⇒ f (x)− g(x) = (x p
− 1)h(x) for some h(x)

⇒ f (xep )− g(xep ) = (x pep − 1)h(xep ).

Since pep ≡ 0(mod pq), we get f (xep )− g(xep ) ≡ 0(mod x pq
− 1). �

Lemma 10. The three identities in the following are true:

(i)∆pq(x) = 1+
∑

1≤i<p

xepi
+

∑
1≤ j<q

xeq j
+

∑
1≤i<p
1≤ j<q

xepi+eq j (mod x pq
− 1),

(ii)
∑

1≤i<p

xepi
= A0(x

ep )+ A1(x
ep )(mod x pq

− 1),

(iii)
∑

1≤i<p
1≤ j<q

xeq j+epi
=

∑
i=0,1
j=0,1

Ai (x
ep )B j (x

eq )(mod x pq
− 1).

Proof. The identity (i) comes from the following:

{i(mod pq) | 0 ≤ i < pq}

= {epi + eq j (mod pq) | 0 ≤ i < p, 0 ≤ j < q}

= {0} ∪ {epi(mod pq) | 1 ≤ i < p} ∪ {eq j (mod pq) | 1 ≤ j < q}

∪{epi + eq j (mod pq) | 1 ≤ i < p, 1 ≤ j < q}.

Note that∑
1≤i<p

x i
=

∑
i∈F∗p

x i
=

∑
i∈A0∪A1

x i
= A0(x)+ A1(x)(mod x p

− 1).

Now, the assertion (ii) follows from Lemma 9. For (iii), observe the following:

∑
1≤i<p
1≤ j<q

xepi+eq j
=

( ∑
1≤i<p

xepi

)( ∑
1≤ j<q

xeq j

)

=

∑
i=0,1

Ai (x
ep )

∑
j=0,1

B j (x
eq )

=

∑
i=0,1
j=0,1

Ai (x
ep )B j (x

eq )(mod x pq
− 1),

where we use the above identity (ii) in the second equality. �

Lemma 11. Let

Jp,q(x) =
q − 1

2

∑
1≤i<p

xepi
+

p + 1
2

∑
1≤ j<q

xeq j
+

∑
i=0,1
j=0,1

(ai + b j + 1)Ai (x
ep )B j (x

eq )(mod x pq
− 1),

where ai , b j , Ai (x), B j (x) are defined for bp and bq in the previous section. Then, (Jp,q(x), αβ) is a defining pair of
Jp,q .

Proof. Lemmas 7 and 8 imply that Jp,q has a defining pair (g(x), αβ), where

g(x) = A(xep )+ B(xeq )+ A(xep )∆q(x
eq )+ B(xeq )∆p(x

ep )+∆p(x
ep )+∆pq(x)(mod x pq

− 1).
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Therefore, Lemma 10 implies that

g(x) = A(xep )(1+∆q(x
eq ))+ B(xeq )(1+∆p(x

ep ))+∆p(x
ep )+∆pq(x)

=

(
p − 1

2
+

∑
i=0,1

ai Ai (x
ep )

) ∑
1≤ j<q

xeq j
+

(
q − 1

2
+

∑
j=0,1

bi Bi (x
eq )

) ∑
1≤i<p

xepi
+ 1+

∑
1≤i<p

xepi

+ 1+
∑

1≤i<p

xepi
+

∑
1≤ j<q

xeq j
+

∑
i=0,1
j=0,1

Ai (x
ep )B j (x

eq )(mod x pq
− 1),

which can be re-organized to equal to Jp,q(x)(mod x pq
− 1). �

Now, consider the proof of the item (i) of the main theorem. We have shown that Jp,q(x) in Lemma 11 and αβ
form a defining pair of the Jacobi sequence. Therefore, we need to show that the last term of Jp,q(x) in Lemma 11 is
the same as the last term of J (x) in the main theorem. This can easily be done by recalling the definition of ai , b j in
the previous section. That is, when (p, q) = (±1,±1)(mod 8), for example, (a0, a1) = (b0, b1) = (1, 0) and hence,
the last term of Jp,q(x) in Lemma 11 becomes A0(xep )B0(xeq )+ A1(xep )B1(xeq ). The remaining cases can similarly
be checked.

For the item (ii) of the main theorem, we consider the set of all the primitive pq-th roots of unity. It is well-known
that there are (p−1)(q−1) primitive pq-th roots of unity in the algebraic closure of F2, all of them are sitting in F2M ,
and it is also known that they are partitioned into (p − 1)(q − 1)/M conjugacy classes over F2, where M = mn/d ,
d = (m, n). We need the following lemma which gives a complete set S of representatives of these conjugacy
classes.

Lemma 12. A complete set S of representatives of conjugacy classes of the (p − 1)(q − 1) primitive pq-th roots of
unity over F2 is given as:

S = {αui
βv

j
| 0 ≤ i < cp, 0 ≤ j < cqd}.

Proof. Note that |S| = cpcqd = (p − 1)(q − 1)/M . Therefore, it is enough to show that any two elements in S are
not conjugate of each other.

Suppose there are two elements in S which are conjugate of each other. Then, there exist (i, j) 6= (k, l) with
0 ≤ i, k < cp and 0 ≤ j, l < cqd such that αui

βv
j
∈ S, αuk

βv
l
∈ S, and

(αui
βv

j
)2

t
= αuk

βv
l
.

This implies

αui 2t
−uk
= βv

l
−v j 2t

∈ 〈α〉 ∩ 〈β〉 = 〈1〉,

where 〈α〉 is the cyclic subgroup generated by α. Therefore, we have{
ui 2t
≡ uk (mod p)

vl
≡ v j 2t (mod q).

(8)

Note that 〈ucp 〉 = 〈2〉 is a subgroup of F∗p , and that 〈vcq 〉 = 〈2〉 is a subgroup of F∗q . Therefore,

∃λ s.t. (λ,m) = 1 and ucpλ ≡ 2 (mod p),

∃µ s.t.(µ, n) = 1 and vcqµ ≡ 2 (mod q).

Therefore,

(8) ⇒
{

ucpλt
≡ uk−i (mod p)

vcqµt
≡ vl− j (mod q)

⇒

{
cpλt ≡ k − i (mod p − 1)
cqµt ≡ l − j (mod q − 1)

(9)
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⇒

{
cp|k − i
cq |l − j

(10)

⇒

{
k − i = cpz p for some z p
l − j = cq zq for some zq .

(11)

Note that we have assumed

0 ≤ k < cp and 0 ≤ i < cp.

Therefore, (10) implies

k = i. (12)

Therefore,

(9) ⇒ cpλt ≡ 0 (mod p − 1)

⇒ λt ≡ 0 (mod m) since cp = (p − 1)/m,

⇒ t ≡ 0 (mod m) since (λ,m) = 1.

Assume that, for some τ ,

t = mτ. (13)

Then,

(9) and (11) ⇒ cqµt ≡ l − j ≡ cq zq(mod q − 1)

⇒ µt ≡ zq(mod n)

⇒ µmτ ≡ zq(mod n)

⇒ d = (m, n)|zq

⇒ cqd|cq zq = l − j.

Note that we have assumed

0 ≤ l < cqd and 0 ≤ j < cqd.

Therefore, the above cqd|l − j implies

j = l.

Therefore (i, j) = (k, l), which is a contradiction. �

Now, we are ready for the item (ii) of the main theorem. For the first term in the trace representation, note that
〈ucp 〉 = 〈2〉 is a subgroup of F∗p , and hence,

F∗p =
⋃

0≤i<cp

ui
〈ucp 〉 =

⋃
0≤i<cp

ui
〈2〉.

Therefore,

∑
1≤i<p

x i
=

∑
j∈F∗p

x j
=

∑
j∈

cp−1⋃
i=0

ui 〈2〉

x j
=

cp−1∑
i=0

m−1∑
k=0

xui 2k

=

∑
0≤i<cp

Trm
1

(
xui
)
(mod x p

− 1).

Lemma 9 now implies that∑
1≤i<p

xepi
=

∑
0≤i<cp

Trm
1

(
xepui

)
(mod x pq

− 1).
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Substituting x = (αβ)t into the above gives

∑
1≤i<p

xepi

∣∣∣∣∣
x=(αβ)t

=

∑
0≤i<cp

Trm
1

(
αui t

)
. (14)

Similarly, using the fact that 〈vcq 〉 = 〈2〉 is a subgroup of F∗q , we get the second term as

∑
1≤ j<q

xeq j

∣∣∣∣∣
x=(αβ)t

=

∑
0≤ j<cq

Trn
1

(
βv

j t
)
. (15)

For the third term, recall the notation of Ai , B j and their generating polynomials Ai (x), B j (x), respectively.∑
i=0,1
j=0,1

(ai + b j + 1)Ai (x
ep )B j (x

eq ) =
∑
i=0,1
j=0,1

(ai + b j + 1)
∑
t∈Ai

xep t
∑
s∈B j

xeq s

=

∑
i=0,1
j=0,1

(ai + b j + 1)
∑
t∈Ai
s∈B j

xep t+eq s

=

∑
i=0,1
j=0,1

(ai + b j + 1)
∑

0≤t1<(p−1)/2
0≤s1<(q−1)/2

xepui+2t1+eqv
j+2s1

=

∑
i=0,1
j=0,1

0≤t1<(p−1)/2
0≤s1<(q−1)/2

(ai + b j + 1)xepui+2t1+eqv
j+2s1

=

∑
0≤i<p−1
0≤ j<q−1

ρi, j xepui
+eqv

j
, ζ(x)(mod x pq

− 1),

where we use the notation

ρi, j , a j + b j + 1,

where the subscripts i and j are understood mod 2. Recall that (a0, a1) = (1, 0) or (ω, ω2) if p ≡ ±1 or ±3,
respectively, and similarly for (b0, b1). Therefore, when (p, q) = (±1,±1) or (±3,±3), i.e., in CASE 1, we have

ρi, j =

{
1 i ≡ j (mod 2)
0 i 6≡ j (mod 2).

For CASE 2, on the other hand, we have

ρi, j =

{
ω i ≡ j (mod 2)
ω2 i 6≡ j (mod 2).

Now, consider CASE 1, first. Then,

ζ(x) =
∑

0≤i<p−1
0≤ j<q−1

i≡ j (mod 2)

xepui
+eqv

j
(mod x pq

− 1).

Substituting x = (αβ)t into ζ(x) gives the following:

ζ((αβ)t ) =
∑

0≤i<p−1
0≤ j<q−1

i≡ j (mod 2)

(αβ)t (epui
+eqv

j )
=

∑
0≤i<p−1
0≤ j<q−1

i≡ j (mod 2)

(αui
βv

j
)t

=

∑
0≤i<cp

0≤ j<cq d
i≡ j (mod 2)

TrM
1

(
(αui

βv
j
)t
)
, (16)
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where the last equality comes from Lemma 12. For CASE 2,

ζ(x) =
∑

0≤i<p−1
0≤ j<q−1

i≡ j (mod 2)

ωxepui
+eqv

j
+

∑
0≤i<p−1
0≤ j<q−1

i 6≡ j (mod 2)

ω2xepui
+eqv

j
(mod x pq

− 1).

Similarly, substituting x = (αβ)t into ζ(x) and using Lemma 12 gives the following:

ζ((αβ)t ) =
∑

0≤i<cp
0≤ j<cq d

i≡ j (mod 2)

TrM
1

(
ω(αui

βv
j
)t
)
+

∑
0≤i<cp

0≤ j<cq d
i 6≡ j (mod 2)

TrM
1

(
ω2(αui

βv
j
)t
)
. (17)

The item (ii) of the main theorem now follows from (14)–(17), and this finishes the proof of the main theorem.

Example 13. The smallest example would be (p, q) = (3, 5), and this turns out to be the same as the binary m-
sequence of period 15. The next is (p, q) = (3, 7), but this case does not correspond to any cyclic difference set.
Therefore, we consider the case (p, q) = (5, 7) which gives a binary sequence Jp,q = {s(t)}t≥0 of period 35 with the
ideal two-level autocorrelation. Now we consider J5,7 = {s(t)}t≥0. Keeping the notations in the Main Theorem, it is
clear that (p, q) = (5, 7) belongs to the CASE 2, and that

A0 = {1, 4}, A1 = {2, 3},m = 4, c5 = 1, e5 = 21,

B0 = {1, 2, 4}, B1 = {3, 5, 6}, n = 3, c7 = 2, e7 = 15,

d = 1,M = 12, and that

A0(x) = x + x4

A1(x) = x2
+ x3

B0(x) = x + x2
+ x4

B1(x) = x3
+ x5

+ x6.

According to the Main Theorem, we may take u = 2 and v = 3, since 2 and 3 are generators of F5 and F7,
respectively. Note that 5 = −3(mod 8), 7 = −1(mod 8), it belongs to the CASE 2. It is known that there exists a
5-th primitive root α of unity such that A0(α) = ω, where ω is a 3-rd primitive root of unity, and there exists a 7-th
primitive root of unity β such that B0(α) = 0. With such choices of α, ω and β, based on Main Theorem we get the
following:

Fact: Keep the notations in the Main Theorem. Let α be a 5-th primitive root α of unity such that A0(α) = ω, where
ω is a 3-rd primitive root of unity, and let β be a 7-th primitive root of unity β such that B0(α) = 0. Then the Jacobi
sequence J5,7 has a defining pair (J (x), αβ) with

J (x) =
∑

1≤i<5

x21i
+

∑
1≤ j<7

x15 j
+ ω

∑
i=0,1

Ai (x
21)Bi (x

15)+ ω2
∑

i=0,1

Ai (x
21)Bi+1(x

15),

and a trace representation as

s(t) = Tr4
1

(
αt)
+ Tr3

1

(
β t
+ β3t

)
+ Tr12

1

(
ω(αβ)t + ω2(αβ3)t

)
,∀t.

Next we show how to get the right elements α, ω and β. In order to choose the right α and ω, we start from
a 5-th primitive root θ of unity, which must be a root of the irreducible polynomial x4

+ x3
+ x2

+ x + 1
over F2, hence, T r4

1 (θ) = 1. Let δ = A0(θ), it is clear that δ = A0(θ) = θ + θ4
= T r4

2 (θ), and then that
1 = T r4

1 (θ) = T r2
1 (T r4

2 (θ)) = T r2
1 (δ), which leads to the fact that δ ∈ F22 \ F2, hence, δ is a 3-rd primitive root

of unity. Thus, ω = δ and α = θ are the right choices. Similarly, in order to choose a right β, we start from a 7-th
primitive root θ of unity, say, θ is a root of the primitive polynomial x3

+ x + 1 of degree 3 over F2. It is clear that
B0(θ) = θ + θ

2
+ θ4

= θ + θ2
+ θ(1+ θ) = 0. Thus, β = θ is a right choice.
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4. Concluding remarks

The characteristic sequences of (v, (v − 1)/2, (v − 3)/4)-cyclic Hadamard difference sets [1,9,10,12,20,4] are
known to have the ideal two-level autocorrelation function, and they have been studied in the community of
communications engineering and cryptography. Every known cyclic Hadamard difference set has the value v which
is either (i) a prime congruent to 3(mod 4), (ii) a product of twin primes, or (iii) of the form 2m

− 1 for some
integer m [1,8,12,20]. Family (iii) have been intensively studied for a long time and their linear complexity and trace
representations are now well understood except possibly for the newly discovered hyperoval constructions [16,3,7].
Recently, in a series of publications, trace representations for the family (i) have been completed [18,19,14,15,4]. This
paper determined a trace representation for the family (ii).
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