
1530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011
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Abstract—Let � � ���� be an odd prime for some � and � , and
let �� be the finite field with � elements. In this paper, we explic-
itly describe the trace representations of the binary characteristic
sequences (of period �) of all the cyclic difference sets � which are
some union of cosets of �th powers�� in� �

� � ������� for � � ��.
For this, we define �th power residue sequences of period �, which
include all the binary characteristic sequences mentioned above as
special cases, and reduce the problem of determining their trace
representations to that of determining the values of the generating
polynomials of cosets of �� in � �

� at some primitive �th root of
unity, and some properties of these values are investigated. Based
on these properties, the trace representation and linear complexity
not only of the characteristic sequences of all the known �th residue
difference sets, but of all the sixth power residue sequences are de-
termined. Furthermore, we have determined the linear complexity
of a nonconstant �th power residue sequence for any � to be either
� � � or � whenever ��� ��� ���	� � �, where 	 is the order of 2
mod �.

Index Terms—Binary sequences with two-level autocorrelation,
cyclic difference sets, th residue cyclic difference sets, linear com-
plexity, minimal polynomials, trace representations.

I. INTRODUCTION

A -CYCLIC difference set is a -subset of the
integers mod , denoted by , such that any nonzero

can be represented as a difference (where
) in exactly ways [1]. It is well known [8], [10] that

its characteristic sequence of period defined
by

for
for

(1)
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has the two-level autocorrelation function

for
otherwise,

(2)

where the periodic unnormalized autocorrelation function
of the sequence is defined as

For this reason and many other randomness properties, the bi-
nary sequences from cyclic difference sets as given in (1) have
been used in many communications engineering and cryptog-
raphy [10], [31], [8]. In these applications, in particular, one re-
quires the out-of-phase value in (2) be as small as
possible [8], and this is achieved by cyclic Hadamard difference
sets which have parameters , , and

for some integer [1], [17]. The characteristic sequences of
cyclic Hadamard difference sets are called Hadamard sequences
[9], [33], [18], and these include the well-known -sequences
[7], [32], [10] and GMW sequences [30], [31], quadratic residue
difference set sequences [34], [36], [1], [8], [20], Hall’s sextic
residue difference set sequences [13], [34], [1], [8], [19], twin-
prime difference set sequences [34], [35], [1]. For the period of
the form , some recent investigation reveals many more
new families and their properties, including 3-term or 5-term
sequences with or without Welch-Gong Transformations [11],
[27], [12], sequences from 2-to-1 map [3], [26], [4], and hyper-
oval difference set sequences [6], [24], etc.

Let be an odd prime and be the cyclic multi-
plicative group mod . In this paper, we will investigate mainly
the characteristic sequences of cyclic difference sets which are
some unions of cosets of the th powers in . These are called
th power residue cyclic difference sets [1], [2]. Existence and

constructions for th power residue cyclic difference sets are
well summarized in [1], [2]. Following gives a complete solu-
tion toward this direction for . We will concentrate only
on these cases because not much have been known for those

.
Fact 1 ( th Power Residue Cyclic Difference Sets, [1, Th.

5.26]): Let be an odd prime, and let ,
or 12. Let be the set of all the th powers in . A union
of cosets of forms a nontrivial cyclic difference set

modulo if and only if consists of the following: (Q) the
quadratic residues; (H) the Hall’s set for ; (B) the
biquadratic residues with or without ; (O) the octic residues
with or without ; or (D) the union of the tenth powers and
its coset for the special case with
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the generator of . Of these, (Q) and (H) are cyclic
Hadamard difference sets with parameters , ,
and .

For their applications to streamcipher systems as pseudo-
random sequence generators, the linear complexity of se-
quences play an important role [10], [29]. It is defined as the
number of stages in the shortest linear feedback shift register
that generates the sequence with a suitable initial loading. This
is equivalent to the degree of the minimal polynomial of the
sequence.

One could determine the linear complexity of a sequence
without determining its trace representation. And the linear
complexity of a sequence does not easily induce its trace
representation whenever it does not admit 2 as a multiplier [7],
[10]. On the other hand, when a trace representation of a se-
quence is explicitly determined, then the linear complexity can
easily be computed. This leads us to not only try to determine
the linear complexity of the various important sequences but
further analyze them to the point where we could determine
their trace representations. Furthermore, trace representation of
a sequence gives very specific insight on its “easy” generation
using one or more linear feedback shift registers for engineering
applications [10]. This paper focuses on those cyclic difference
sets described in Fact 1 which covers some important classes
of sequences including cyclic Hadamard sequences [9], [33].

Some historical remark follows. Linear complexity of
quadratic residue difference set sequences (also called as Le-
gendre sequences) has been determined earlier in [36] and [28],
later independently in [5]. Trace representation of these se-
quences of period which are Mersenne prime was determined
in [25], and for any odd prime in [20] which reconfirmed
the calculation of its linear complexity. Trace representation
and linear complexity of Hall’s sextic residue difference set
sequences of period which are Mersenne prime have been de-
termined in [22]. It is well known that there are only three such
primes, namely, 31, 127, and 131071. Linear complexity of
these sequences in general has been determined in [19]. Trace
representation of these sequences of period is
determined [21] and the case where has been
open quite for some time.

In this paper, we explicitly determine the trace representations
of the characteristic sequences of all the cyclic difference sets
mentioned in Fact 1, all of which are new, except for the cases
of quadratic residue difference sets and of Hall’s sextic residue
difference sets for .

For this, we define th power residue sequences of period
, which include all the binary characteristic sequences men-

tioned above, and reduce the problem of determining their trace
representations to that of determining the values of the gener-
ating polynomials of cosets of in at some primitive th
root of unity, and some properties of these values are investi-
gated. Based on these properties, trace representation and linear
complexity of not only the characteristic sequences mentioned
above, but of all the sixth power residue sequences are deter-
mined. Furthermore, we have determined the linear complexity
of a nonconstant th power residue sequences for any to be
either or whenever , where is the
order of 2 mod .

This paper is organized as follows. Section II develops gen-
eral formula for trace representation of th power residue se-
quences of period . It has five subsections: (A) the notation
and properties of parameters in this paper, (B) definitions of
a defining pair of a sequence and more, (C) the linear space
of binary th power residue sequences over , (D) introduc-
tion of -tuples where for

which will be defined and investigated in full, and
finally, (E) final formula in Theorem 5. All six Theorems in
Section II are new. Section III discusses some applications of
earlier development in Section II to some specific th power
residue sequences of period . These include (A)
the case (quadratic residues, known and rediscovered),
(B) the case (sextic residues, the case
is known but the case is new), (C) the cases

in which th residue cyclic difference set exists,
which are all new. Finally, Section IV summarizes this paper
and presents some remaining open problems.

II. GENERAL FORMULA FOR TRACE REPRESENTATION OF TH

POWER RESIDUE SEQUENCES

A. Preliminary and Notations

We will begin by describing some notations for this paper. We
let be the finite field of size for any prime or prime power
. We let be an odd prime, and let , which is the

cyclic multiplicative group mod . We fix a pair such that
with , and let , which is

a subgroup of . For any , the coset
of will be called simply -coset, and we write
when . We let be the order of 2 mod , and let

. We let , and let . We let
be 1 or 0 according to whether the integer is odd or even,

respectively, and let . It is known that there exists
a primitive th root of unity in , we let be such a root, and
let , where .
For any field (say, or ) and any positive integer

we denote by the set of all possible -tuples over ,
i.e., , and denote
by the Hamming weight of any tuple , i.e., the total
number of nonzero elements among . Denote

, which is the trace function from to
. We denote the algebraic closure of by .
We list some properties of the parameters mentioned above

for later use without proof. Some items are well known, and
others can be proved easily (refer to [14]).

Lemma 1 (Properties of the Parameters): Let be a generator
of the cyclic group .

1. is a primitive th root of unity in if and only if
.

2. and .
3. and .
4. , and hence, .
5. , where that is if

, and if .
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6. Denote by the element in the quotient group
. Then

in other words, but if .
In particular, , where
denotes the order of in , and denotes the
group generated by in . Similarly for and

. As a consequence, there exists an integer such
that and , and is uniquely
determined up to modulo by when . Denote this

by , and denote by the inverse of modulo ,
then . Moreover, let be the integer with
the property and
(it is known that such does exists), then is a
generator of and . When or

, we have , and hence we may
put .

7. is the maximal integer dividing such that 2 is a th
power in the group .

B. Defining Pair, Trace Representation, Minimal Polynomial,
and Linear Complexity

In the remaining of this paper, we keep all the notations in
Section II, unless specified otherwise. In this paper we consider
only binary sequences of period . Let be such a sequence, we
denote its th element by , and denote its minimal
polynomial (MP) by , denote its linear complexity (LC)
by . In this section, we will define “defining pair” for ,
and show that the trace representation (TR) of and both
and can easily be obtained from the defining pair of .

Given a binary sequence of period and
a primitive th root of unity (i.e., ), we have a
function from to as follows:

(3)

Recall that is the order of 2 mod . It is clear that can be
represented as a polynomial with coefficients from , which
is a function from to [23].

Definition 1 (Defining Pair of Sequences): The polynomial
together with satisfying (3) form a pair , which

will be called a defining pair of the sequence ; and will be
called the defining element, and the defining polynomial
of corresponding to .

Note that if is a defining polynomial of corresponding
to , then is also a defining polyno-
mial of corresponding to for any with coefficients in

. Therefore, the defining polynomial can be considered
as a residue class of polynomials modulo . Moreover, ob-
serve that the defining polynomial of corresponding to a given
defining element is uniquely determined up to modulo
by the following lemma.

Lemma 2: Let and be two
polynomials over , and let be a primitive th root of unity,

i.e., . If , then
.

The index in or in or in can
be considered as an element in , since ,

and for any integer
. Therefore, for the sake of convenience, we will agree the

following equalities. Here, is arbitrary

which make sense and would not cause any confusion.

Definition 2 (Hamming Weight of Polynomials mod ):
For a polynomial residue class

, the total number of the nonzero coefficients ,
, will be called the Hamming weight of the class

, and will be denoted by or simply by
.

Lemma 3 (Defining Pairs Determining MP, LC, and TR): Let
be a generator of , and let be a primitive

element, and let be the irreducible polynomial over
with as a root. Let be a defining pair of a given
binary sequence of period , and let

. Then , and
, and has a trace representation as follows:

(4)

where is not conjugate to the element for
; and

(5)

(6)

Proof: The proof can be done in the same way as in

[10, Ch. 6].

C. Space of th Power Residue Sequences of Period

Definition 3 ( th Power Residue Sequences): We say a binary
sequence of period is an th power
residue sequence if is constant on each of the -cosets in

.
Three examples follow. Given , the coset de-

termines an th power residue sequence ,
where . We call a single coset se-
quence. The index can be also understood as the coset ,
since whenever . There exist totally
single coset sequences, and they can be represented by ,

, where is any given generator of . The sequence
, is an th

power residue sequence for any , which we call -sequence.
The sequence , is an th
power residue sequence for any , which we call all-1 sequence.
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Let be a generator of . Then it is clear that

(7)

For any given th power residue sequence , it
is also clear that

if
if

(8)

Theorem 1 (Space Spanned by th Power Residue Se-
quences): The set of all the th power residue sequences of
period , denoted by , is a linear space over

of dimension , and is a
basis of over for any given generator of . In par-
ticular, any th power residue sequence can be uniquely
expressed as either or , where ,

.
Proof: Obvious. We note that the basis of over could

be alternatively taken as , and then any
th power residue sequence can be uniquely expressed as in

(8).

D. Generating Polynomials of Cosets and Related -Tuples

Definition 4 (Generating Polynomials of Cosets): Given
, the generating polynomial of the coset is defined as

(9)

which will be denoted by .

Definition 5 ( -Tuples and Matrices Related to Cosets): The
generating polynomials will be ordered as an -tuple according
to any given generator of , denoted by , and written
as a column vector

(10)

where is a transpose. Correspondingly, the elements ,
, which are values of at , will

also be ordered as an -tuple over (since ) as

(11)

Based on the -tuple , we define an symmetric ma-
trix as follows:

(12)

It is clear that the index in both and
in the above definition can be understood as a number

modulo , since , hence
and . We now state and prove

some properties of these in the following.

Lemma 4:
1. Let , then we have the following:

(a) .
(b) . As a consequence,

whenever
.

(c) .
2. Let ( ) be a generator of , and let

, , where and are defined in Lemma 1.
Then
(a) ;

(b) , and
, . (This

will be called the conjugacy property of the tuple
in Definition 5.)

3. for any .
Proof:

1.

2.

From and (Lemma 1) and the
above item 1, we have

3. Let . Note that
, we have

and
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then

Now, consider the set of the -tuples over all and
. That is,

(13)

Take a generator ( ) of , it is clear that

Definition 6 (Cyclic Shifts and Decimation on -Tuples): Let
be the set of all possible -tuples over . It is clear that

. Let . We define to be
the cyclically left-shift operator and for and

to be the -decimation operator over given as

(14)

(15)

It is clear that both the operators and are invertible.
Let be the group generated by the operators and all ,

. It can be easily checked that ,
where is taken mod , and the size of is , where
is the Euler’s- -function. It is known [14] that the elements in

are divided into some equivalent classes under the action of
the group , and that two elements and in are equivalent
under the action of the group (in short, -equivalent, and
denoted by ) if and only if there exists such that

.

Lemma 5 ( is an Equivalent Class): We have

(16)

(17)

Furthermore, the set is an equivalent class under the action of
the group .

Proof: We have, by Lemma 4

and

This shows that the set is closed under the action of the group
.
Now, it is enough to show that for any two

generators and of and any two elements and
in . We may assume for some with

, and assume for some . Then, from (16)
and (17) we have

which proves .

Theorem 2 (Properties of ): Let be a given gener-
ator of , and let . Denote by the identity

matrix of size for any positive integer , and denote by
the matrix which is made of the first columns of , and denote
by the all-1 matrix of size . Denote simply

where , are defined in Definition 5, and are
defined in Lemma 1. Let be the square matrix of size given
as

(18)

where is a transpose and is the all-0 row vector of length
. Then

1. . In particular, .
2. , .
3. and , .
4. . In other words,

for all . In particular, the matrix
is invertible. Furthermore, if we let , then

.
5. The tuple has no “period” less than .
6. Let for all , and let be a

square matrix of size , where . Then
(a) .
(b) .
(c) .
(d) is invertible.
(e) In the case when , there exists at least one such

that among .
7. and , where

is a constant on the set , where is defined in (13). In
particular, and when .

Proof:
1. From

(Lemma 4) we get

2. From (c) of item 1 in Lemma 4, we have
, and then ,

hence .
3. From (b) of item 2 in Lemma 4 we have, for
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which leads to the desired result by substituting into .
4. Let , then . Let

, we have by definition. From the defini-
tion we have

Then, based on the fact that (Lemma 1), we
see

(19)

Let , then it is enough to prove
, where is the the Kronecker delta symbol:

if , and if . From (19), we see
, where . Then

It is easy to see that, for

and the inverse is obvious. So we get, for

Now we evaluate the value of separately for the case
and the case , with the fact that . In

the case when , we have and for any
. Therefore

In the case when , we have and we distin-
guish whether is 1 ( ) or not ( ). Therefore

hence .
The equivalent expression comes easily from the observa-
tion that . To show that

, it is enough to show that . Recall that
is over , i.e., the field of characteristic 2, and we re-

strict the value of be even from 2 to 12. Therefore

since and .
5. Assume the period of is less than , say, equal to . Then

the th row of will be the same as the zeroth row of ,
and, hence, is not invertible, a fact which contradicts to
the above item 4.

6. Keep the notations in the item 3.
a) From the fact that (item 3), we see

b) From the definition of and the fact that
(item 3) , we see

c) From item 1 above,

d) Note that

and the fact that is an invertible matrix, we get
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e) If all , then , and then
. But from the above (d), we see

, a contradiction to the assumption
.

7. Since is unchanged under the action of the
operators and , , we see
is a constant on the set from Lemma 5. Observe that

. From
the conjugacy property of the tuple (the item 3
above), we see that , and
hence, is also a constant on the set .
From the item 1 above we see , hence,

. In particular, when , we have
, and , then

, hence we have .

The property stated in the item 3 of Theorem 2 will
be called the conjugacy property of the -tuple vector

in Definition 5, which
is denoted by in Theorem 2.
We will use this notation in the remaining of this paper. We will
further analyze the conjugacy properties of this -tuple vector.

Lemma 6: Let and . Then
1. The tuple has the conjugacy property in the sense as

shown

2. .
3. .

Proof: We will show only the first item. The remaining
ones are easy to check from this. Note

From the conjugacy property of (refer to the item 3 of Theorem
2), we have

Lemma 7: Let

for all . Then both and are
bijective maps from to ; and is a surjective map from

to .
Proof: Denote for all

. For any and any ,
from the conjugacy property of (Lemma 6), we have

(20)

(21)

If , then , since is invertible from Theorem
2; and then we see from (20) and (21), i.e., .
Hence is injective. And then, is surjective since the domain
space of has the same size as its image space:

, where denotes the size of the set
(similar for ). Therefore, is bijective.

Denote , where each
component is a function from to . It is clear
that is surjective since is surjective . Therefore,
is surjective since . The bijection of can be
proved similarly.

The following result should be well known, but no explicitly
written publication was found as far as authors are concerned.
Therefore, for the sake of completeness, we give a proof, in
Appendix. Let , , be subsets of , and their sum
be given as .

Lemma 8 (Sum of Subfields): A finite field is not a sum of
its proper subfields.

Theorem 3: Among the values , ,
there exists at least one such that . Moreover,
when , the elements ,
make a normal basis of over , and satisfies

for and
for .

Proof: Let . From Lemma 7
we have . Then, from Theorem 2 we see
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and thus . Therefore, from Lemma 8 we
see there exists at least one such that . When

, we have . From Theorem 2 we have

and then

which means that elements , , make a normal
basis of over . Finally, using the item 4 of Theorem 2,
when , we have

if
otherwise.

E. -Tuples and Defining Pairs

We have seen that any th power residue sequence is of the
form or for some . In
studying the defining pair for th power residue sequences, note
that is a defining pair of whenever
is that of , so we need pay attention only to the th residue
sequences of the form .

Theorem 4 ( -Tuples Determining Defining Pairs): Let be
a generator of , in particular, is a generator of .
Let

Then

(22)

(23)

where . Furthermore,
is a defining pair of , where

Proof: Denote and
. It is clear that for . Note

that the index in both and are understood as a number
modulo , we have

and

For the second part, we first consider the case when

(24)

where is the Kronecker delta symbol, that is if
, if . It is clear that . Let

, then from
Theorem 2. Recall with , thus

(25)

Note that , and

we get

(26)
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Note that

Therefore, for

For

Therefore, which proves the theorem
for the case when . Since

we see is a defining pair of , where
. We have

which proves the theorem.

We now arrive at the final formula for the trace representation
of general th power residue sequences of period . Given an th
power residue sequence, one can uniquely determine the corre-
sponding -tuple (See Theorem
1). This -tuple uniquely determines its defining pair
(see Theorem 4). Then, from this defining pair, one can deter-
mine the trace representation, minimal polynomial, and linear
complexity of the sequences as in the following.

Theorem 5 ( -Tuples Determining TR, MP, and LC): Let

where . Denote

Then the following are true:
1. For the sequence

(a) A trace representation is given as

(27)

(b) The minimal polynomial is given as

(28)

where denotes the irreducible polynomial over
with as a root.

(c) The linear complexity is given as

(29)

In particular,
i. When , for each (a single coset

sequence):

(30)

where is defined in the item 7 of Theorem 2.
ii. When :

.
(31)

2. For the sequence , where is the cyclically-left-shift
operator in Definition 6, we have

3. For the sequence , we have

Proof:
1. From Theorem 4 we see the polynomial
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is a defining polynomial of the sequence corresponding
to the defining element , and then, both the trace repre-
sentation (27) and the minimal polynomial (28) can be ob-
tained from the item 1 and item 2 of Lemma 3 respectively,
and the linear complexity (29) can be obtained from the
item 3 of Lemma 3 and the item 3 of Lemma 4. The linear
complexity of two special cases can be determined as fol-
lows:

i. We know that

Therefore, from the item 7 of The-
orem 2.

ii. In the case when , we have and
. From Lemma 7 we see

whenever , hence . There-
fore, whenever , we have (31) as

2. From Lemma 6 we see , hence

and then

3. We assume is a defining polyno-
mial of corresponding to , where or 1, then

is a defining polynomial of
corresponding to . Now, let

. Then is the minimal polyno-
mial of , and is the min-
imal polynomial of . Since it is easy to check that

, we have

and

An immediate application of this to the sequences and
seems to be intuitive and interesting. Let

Then is the defining pair of , and is that
of , for any primitive th root of unity , and
and .

Theorem 6 (Distribution of Linear Complexities): The linear
complexity of any th power residue sequence of period must
be of the form for some and some

. Moreover, let be the total number of the th
power residue sequences of period with the linear complexity
being equal to , then

In particular, when , we have for
and for .

Proof: Recall the bijective map from
to in Lemma 7. Let

and let be the pre-image of under the map , i.e.,

and let

It is clear that , and that

Therefore

III. DETERMINING THE PARAMETERS FOR SPECIFIC TH

POWER RESIDUE SEQUENCES

A. Trace Representation of Legendre Sequences, Rediscovered

Let be an odd prime. The trace representation
[20] and the linear complexity [5], [20], [28], [36] of a Legendre
sequence of period have been studied earlier by many. It would
be an interesting exercise to use all the theory and formula in the
earlier sections to recalculate these. The minimal polynomials
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TABLE I
CLASSIFICATION OF THE PRIMES � � �� � � WITH � ODD AND �� � � � ��� , THE VALUE OF � � ��� �	, AND A REPRESENTATIVE � � �

of Legendre sequences have not explicitly given so far, which
turned out to be

for
for

where is a primitive 3-root of unity, is a generator of
, and , for , are given as in Definition 4.

We just note that the Legendre sequences for for
correspond to the balanced binary sequence with the

ideal two-level autocorrelation.

B. The Case and Hall’s Sextic Residue Sequences

Let be a prime for some , and be a generator
of . Let be the cyclic subgroup
generated by for and 6. Then, we have

and

We are mostly interested in the cyclic difference sets (and their
characteristic sequences) which are some union of some of these
cosets of with or without . It is evident that the case
even is not much interesting. We will consider only the case
odd in this paper when . Then and
hence , respectively.

From Theorem 2 of [13], we see that Hall’s sextic residue
sequence of period
(for some integer ) is defined as follows.

otherwise
(32)

where is given by the condition that .
In this subsection, we will first describe defining pairs of the

six basis sequences for (see Theorem 1). This
will lead to the defining pairs of all possible sextic residue se-
quences (for odd), and their trace representations, minimal
polynomials, and linear complexities (see Theorem 5). Then,
we give a complete determination on the linear complexity of all
the possible sextic residue sequences (Theorem 8) and discuss
on the Hall’s sextic residue sequences corresponding to cyclic
Hadamard difference sets (Theorem 9).

Let be a primitive th root of unity in , and let
be a defining pair of the sequence . Denote by

the binary 6-tuple of weight 1 and in which only the th
position has value 1. From the item 2 of Theorem 4, we see
clearly that, since is odd and hence and

(33)

Therefore, the trace representation becomes

(34)

Now, it remains to determine the set as given in (13). For this,
we will distinguish four cases as shown in the left-most column
of Table I. This classification will be done using the following:

Fact 2 (Quadratic and Cubic Characters of 2 and 3 mod
[15]): Let be a prime for some odd . Then,

, and

When , we have . If we write
for some unique integers and ( which is possible

if ), then we have

and

Theorem 7 (The Set for ): Let be a
prime for some odd . Then, is determined as shown
in Table I. Furthermore, for each value of , there exist
such that is
shown in Table I. For , either one is possible, but not both,
as changes.

Proof: Note first that and
. The item 8 of Lemma 1 says that is the maximum
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such that and . From Fact 2, one can classify these
cases, which are shown in the first two columns of Table I. Then
the value of can be determined as shown in the third column of
the table. The remaining columns show the 6-tuples for each
case, which will be described. Recall the notation

Case : In this case, and hence,
for all and . In fact, , or 5, since
by Theorem 2. If , then we have ,
where represents that both sides are -equivalent (Lemma
5). Without loss of generality, from Lemma 5, we assume that

. Then the 6 6 matrix in (12) becomes
, and hence, . But the item 4 of Theorem 2 says

, which is a contradiction. Therefore,

. Now, we can clearly see that also from
the item 4 of Theorem 2 by using . Therefore, we
must have . Finally, claim that

For this, we classify vectors over of weight 3
into three -equivalent classes (Lemma 5) whose representa-
tives are of size 6, of size 2, and

of size 12. The first two choices are easily ruled
out by the following: if then becomes
singular which is a contradiction to the item 4 of Theorem 2;
similarly the case is impossible.

Case : In this case, , and for
. The item 6 of Theorem 2 implies that (i)

for , (ii)
, and (iii) at least one of for is 0. Note that, if

, then . (or,
.) From (i) above, we have . From

(ii) and (iii) above, we may assume that
without loss of generality. This implies that

where is a primitive element of and . Now,
claim that . To show this, we need the relation given in
the item 4 of Theorem 2 again. Since is odd, it implies that,

for all . If , then,
by considering the case in the above relation, we have

which is impossible. Therefore, , and hence,
Note that the case where and

is equivalent to the above.
Case : In this case, , and

for . The item 6 of Theorem 2 now implies that (i)

for and (ii) . Let be a primitive
seventh root of unity satisfying . Then,

, and we have and . Using
the above (ii) and the item 4 of Theorem 2, the only possible
6-tuple would be .

Case : In this case, , and
for . The item 6 of Theorem 2 implies that

for any , and the item 3 of the the-

orem implies that . Thus which determines
must have . There are 32 elements in with

trace 1. Following checks one by one whether each of 32 ele-
ments can be . Let be a primitive element such that

. Then, it can be easily checked that
for , and for . The remaining el-
ements of which are not in any subfield are partitioned into
9 cosets, and 5 of them have the trace value 1. Note that these
cosets are roots of irreducible polynomials whose coefficient of

is 1. Therefore, 30 elements of trace value 1 which are not in
. These elements are checked with respect to the relation in

the item 4 of Theorem 2. There are exactly 12 elements that sat-
isfy the relation, and they form two conjugate classes and two
corresponding -equivalent classes with minimal polynomials
shown in Table I. Note that these two possibilities are not equiv-
alent under the action of the group in Lemma 5, and hence,
cannot both be in .

One can write explicitly a defining pair , and hence a
trace representation, minimal polynomial and linear complexity
of any sextic residue sequence of period with odd
using any one member shown in Table I, together with
trace representations of for in (34).

Theorem 8: Let be a nonzero
binary 6-tuple. The linear complexity of the sextic residue se-
quence of the form as in Theorem 1 is
shown in Table II.

Proof: Note that the linear complexity of the sequence with
is the same as that with from

the item 2 of Theorem 5. The linear complexity in Table II are
computed from (29) in Theorem 5 using and the value
shown in Table I.

Now, we will simply describe one case and
in the table. All other cases can be checked similarly.

Consider . Recall that , odd, and
. From Table I, we see that .

Therefore

It is obvious that the case with gives Legendre
sequences since picks up those cosets for .
To show that the case with gives Hall’s sextic
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TABLE II
LINEAR COMPLEXITY OF SEXTIC RESIDUE SEQUENCES OF THE FORM

� � � � OF PERIOD � � �� � � WITH � ODD IN THEOREM 8.
THE MARK � INDICATES THAT THEY ARE HALL’S SEXTIC RESIDUE SEQUENCES

AND � INDICATES THAT THEY ARE QUADRATIC RESIDUE SEQUENCES

residue sequences, we do the following: From (32), we see that
Hall’s sextic residue sequences are given as

where , and or 5 depending on the choice of
. It is known [19] that when , the linear complexity

of Hall’s sequence is and its minimal polyno-
mial does not have root 1. Thus, the linear complexity of

is . In Table II, among the rows
with , three cases correspond to linear complexity

, which are . It is easy to check
, and the other two are equivalent to nei-

ther which corresponds , nor which
corresponds to . Thus, Hall’s sextic residue sequences
correspond to the case .

Note that Theorem 8 includes the sequences which are char-
acteristic sequences of sextic and quadratic residue Hadamard
difference sets as special cases. Note also that the linear com-
plexity of these are known. Except for these cases, the result is
fully general and covers the totality of sextic residue sequences,
regardless of being related with cyclic difference sets.

Theorem 9 (Trace Representation of Hall’s Sextic Residue Se-
quences): Let be the Hall’s sextic residue

sequence of period (for some integer )
given in (32), and let be a primitive th root of unity
such that the 6-tuple be determined as shown in Table I.

When , (which is known by [21]), we let
and . Then

is a defining pair of and

(35)

When , (which is new), we let
and , where is a prim-

itive third root of unity. Then is a defining pair of
and the trace representation of is given as shown in (36) at the
bottom of the page.

Proof: From Fact 2, we see that or if
. Since or , Table I

shows that for or for
. From Theorem 8, we observe that Hall’s sextic

residue sequences are equivalent to the case . This
implies that in Table I was chosen such that , or

, since . Therefore

Using the value in Table I, we have the
following two cases.

When or : Since ,
we have

Now, if we choose the primitive th root of unity to be
instead of , then Lemma 5 implies that

, and hence, , and (note
in this case)

(36)
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The linear complexity in this case is . Compare
this result with those in [21] and [19].

When or : Using
, we have

Note that, if we choose the primitive th root of unity
to be instead of , Lemma 5 implies that

, and
. This leads easily to (36).

Note that the change from into in both of the above cases
does not change the value for which .

Note that the trace representation (36) for
is new, but the case for have been known [21].
Linear complexity for both cases have been known also [19].

C. The Cases , , and in Which Cyclic
Difference Sets Exist

In this subsection, we will concentrate only on the cases of
primes where , , or , such
that th power residue cyclic difference sets exist. We will de-
scribe the set for the characteristic sequences of these cyclic
difference sets. This will be enough to determine their defining
pair (and hence, their trace representations, minimal polyno-
mials and linear complexity) of these sequences. Those primes

necessarily have odd, and are characterized by the
following.

Fact 3 (Existence of th Residue Difference Sets for ,
and 10 [1], [34]): For , and 10, only the following th
residue cyclic difference sets exist.

Case : Let be an odd prime where is
odd. Then we have the following:

(B) is a -cyclic difference
set if and only if for some integer , i.e.,

is an odd square;
(B1) is a -cyclic
difference set if and only if for some
integer .

Case : Let be an odd prime where is
odd. Then we have the following:

(O) is a -cyclic difference
set if and only if for some
odd integers and ;
(O1) is a -cyclic
difference set if and only if
for some odd integers and . It is known that

is the only prime up to 34, 352, 398, 777 that
can be written as .

Case : Let be an odd prime where
is odd. Then

(D) is a
-cyclic difference set mod 31, where

is a generator of .

We will take care of the simple case (D) first.

Theorem 10: Let , , and let be the character-
istic sequence of the cyclic difference set

, then .
Let be a root of the polynomial , then is a 31st
primitive root of unity. Then is a defining pair of ,
where is given as shown in (37) at the bottom of the page.

Proof: Observe that is the order of 2 modulo 31.
Then, , , and .
Take , which is a generator of . Then,

and .
satisfies . We have

, and then . We have
, and then get

. See that and . We let
. Based on Theorem 4 we see

is a defining
pair of the sequence ; and

is a defining pair of the sequence
. Take , then is

a defining pair of the sequence . It is clear
that . Again based on
Theorem 4, we have

where (38)

From , here we have . Then it must be
, and . By a straightforward

computation, we get and , which together
with (38) leads the desired result.

Theorem 11: Let with and odd. Then
there exists a generator of such that , and that
there exists a -th primitive root of unity, such that

, where , and is a
root of , where either or

(but not both).
1. In case when for some integer (it is known

that is a - cyclic difference

(37)
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set module ), let . Then is the characteristic
sequence of , and it has a defining pair ,
where

and is described as above.
2. In case when for some integer (it is known

that is a - cyclic dif-
ference set module ), and let . Then is
the characteristic sequence of the difference set ,
and it has a defining pair , where

and is described as above.

Proof: From Fact 3 for , if we let be a generator
of where is a prime with odd, then

and the quadratic reciprocity theorem implies that 2 is
a quadratic nonresidue mod . Therefore,

. (If then we may change the generator from
to with for some integer .

Therefore, we may always choose a generator such that
.) From Lemma 1, this gives . Therefore , and

for . Thus,
and their sum is . Therefore, there

are only two possibilities: is a root of or
. Note that two 4-tuples above are not

-equivalent. The remaining two items can easily be checked
using the fact that for case 1 and
for case 2, together with
since , and (Corollary 1).

Fact 4 (Biquadratic and Octic Characters of 2 mod
[2]): Let be a prime. Then, (i) 2 is a bi-

quadratic residue mod if and only if either
for some and or

for some and which are both odd; (ii) 2 is an octic residue
mod if and only if either or

.

Theorem 12: Let with and odd,
and assume the , where is the -parameter corre-
sponding to . Then there exist and such that

, where
or , but not both.

1. In the case when for some odd
integers and (it is known that is a

-cyclic difference set module ), let .
Then is the characteristic sequence of , and it has a
defining pair , where

the index is modulo 8, and is described as above.
2. In the case when for some

odd integers and (it is known that is a
-cyclic difference set modulo ),

let . Then is the characteristic sequence
of , and it has a defining pair ,
where

the index is modulo 8, and is described earlier.

Proof: Consider the cases (O) and (O1) in Fact 3 for .
Let be a generator of where is a prime with

odd. We note that . Therefore, .
Fact 3 says is a cyclic difference set if and only if

. These two conditions are just sufficient for
2 to be an octic residue mod (Fact 4). Also is a cyclic
difference set if and only if for
some odd integers and . These are also sufficient for 2 to be
an octic residue mod . Therefore, in all interesting cases where
8-th residue cyclic difference sets exist, the time 8 of Lemma 1
gives , and hence, for all .
Since , we must have . Letting

be the Hamming weight of the vector , this implies that
, or 7.

Claim that . Otherwise, from Lemma 5, we have
, without loss of generality. Then the

8 8 matrix in (12) becomes , and hence,

. But the item 4 of Theorem 2 says

, which is a contradiction. Now, from the same item of
Theorem 2, we must also have that . Therefore, we
must have or 5.

Consider the case first. We may fix and
consider all the cyclically distinct 8-tuples as follows:

, , ,
, , , and
. Of these, , , and . Thus,

, and can be ruled out, and , , and remain.
All these 8-tuples except for , can be ruled out by the relation
given in the item 4 of Theorem 2. Therefore, only remains.
From the same item of Theorem 2 and above, we see that, for
the case , the only possibility is

which is a complement of . Therefore, as changes, there are
and such that is either

Note that the above two possibilities are not -equivalent. The
remaining two items can easily be checked using the fact that

for case 1 and for case 2, with
.

IV. CONCLUDING REMARKS

In this paper, we have explicitly described trace represen-
tations of the binary characteristic sequences (of period

) of all the cyclic difference sets which are some union
of cosets of th powers in for , including the Hall’s
sextic residue sequences for (Theorem 9).
For this, we have defined a defining pair of th power
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residue sequences, where is a polynomial over mod
, is a primitive -th root of unity, and is the

order of 2 mod . We have investigated properties (Theorem
2) of the -tuple vector , where

is the generator polynomial of the coset
, where is a generator of and contains all the

-th powers in . Main results in this theory are three lemmas
(Lemmas 1, 3, 5) and five theorems (Theorems from 1 to 5).

We have, furthermore, determined the linear complexity of
all the sixth power residue sequences of period with

odd (Theorem 8), and in general, that of all the th power
residue sequences whenever (Theorem 6).

How to evaluate the -tuple for some
and for a prime seems to be an interesting

problem. Theory developed in this paper has given some way
to do it, as we have done here for the characteristic sequences
of th residue cyclic difference sets for . Now, how to
develop the theory for with general is worth of
studying further.

We will conclude this paper with the following. It
turned out that determining the exact value of

for some and is enough in all
of the above cases, and some problems remain open.

1) When or with , any
must be -equivalent to only

one of two possible -tuples (not both, since they are
not -equivalent with each other). It is not known so far
whether any one can be ruled out completely, or both
occur as changes.

2) Computations of for the values of
other than those covered in the subsection for or

also remain as future research.
3) So do those for the case with even.
4) So do the cases with .

APPENDIX

PROOF OF LEMMA 8

Let , and , , be subsets of ,
, for

any given , and .
We write if the sum is a direct sum,
that is, the sum has the property that “if for
some , then .” The following lemma is well
known.

Lemma 9 ([14], [16]): , where is the
least common multiple of and . In case , any
basis of over must be a basis of over .

Assume , where is a prime, or odd. It is
enough to prove that is not a sum of its maximal subfields,
i.e.

where , where ’s are distinct primes, that
is, if . Denote , where

, and . Then, . Denote
and for each . Then , and

hence, it is enough to prove

(39)

We will prove (39) by induction on the number of the prime
factors of . When , (39) is obviously true. Assume (39)
is true when the number of the prime factors of is less than
, and consider the case where the number of the prime factors

of is . Let denote the vector space dimension of
over , and define . By the

induction assumption, we know

Assume is a basis of over ,
then there exist such that
is a basis of over . By Lemma 9 we see the set

is also a basis of over , i.e.

For , from Lemma 9 we have

and thus

Therefore

Note that and , we see
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hence

i.e., (39) is true.
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