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Abstract—Let � be a prime and � a positive integer. Let ������
and� �

� ��

�
. In this paper, we construct a family � of ��� �-ary

sequences, each member of � has period � and the magnitudes
of correlations of members of � are upper bounded by �

�
�� �

�
�
�� � �.

Index Terms—CDMA signature sequences, correlation bound,
linear complexity, m-sequences, Weil bound on Kloosterman sum.

I. INTRODUCTION

I N the wireless communication systems employing code-
division multiple-access (CDMA) scheme, a signature se-

quence is used for each user in order to distinguish the intended
signal from others. [5], [24] In the design of a family of such
sequences, some of the important properties that should be con-
sidered are known to be (1) how big is, (2) how long the
period of each sequence in is, (3) how small the maximum of
nontrivial auto-correlation and cross-correlation of sequences in

is, and sometimes (4) how big the linear complexity of each
member of is. [5], [11], [24]

In 1969, Sidelnikov showed that two types of certain char-
acter sequences (nonbinary) have “good” auto-correlation prop-
erty. [22] These sequences are now almost fully studied and
expanded to families of sequences with “good” cross-correla-
tion properties. [7], [10], [11] Some results on the distribution
of cross-correlation and size of -ary sequence family are given
in [1], [2], [4], [9], [18], [19], [26], [28] for and in [6], [8],
[13], [14], [16], [17], [20], [23], [25] for odd prime. Recently,
Kim et al. presented a family of -ary decimated sequences with
low correlation [12], and this paper is a further generalization of
their results.

Let be a prime (even or odd) and a positive integer. Let
and . In this paper, we construct a family of

size , each member of has period and the magnitudes
of correlations of members of are upper bounded by

with some reasonable condition on .
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II. FAMILY

We fix the notations in this paper as follows:
• is a prime and is a positive integer.
• is the finite field of size . [15]
• .
• where is a positive divisor of . We will

use -decimation of an m-sequence of period so that
the result has period .

• is a complex primitive th root of unity.
• is a trace function from to ,

namely, for .
• , the canonical additive character of .

Note that for .
• is a primitive element.
• .
For any -ary sequence , , of period , its

nontrivial auto-correlation is given by, for

(1)

When , , is any other -ary sequence of period
, then the cross-correlation of the two is given by, for

(2)

We say and are cyclically equivalent if there exists
an integer such that for all . Otherwise,
they are said to be cyclically distinct.

Let for be a -ary m-sequence
of period . Since , the decimated sequences

and have the period . We define
a family of sequences each of period to contain the
sequence for each of , ,

, , and , , where

(3)

Theorem 1 (Main): Let be the family of sequences whose
members are given in (3). Then, (i) the magnitude of nontrivial
auto-correlation and cross-correlation of members in is upper
bounded by , and (ii) no two members in are cyclically
equivalent, and hence, , provided that
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III. PROOF OF THE MAIN THEOREM

We will follow initially the method in [12]. The major differ-
ences are (1) can be even and (2) can be bigger than 2.

To calculate the correlation of sequences in , we consider
two sequences and in , and
calculate (2). It is an auto-correlation when , , and

, and it is a cross-correlation of two distinct members of
otherwise. It will be the trivial auto-correlation when ,

, , and .
Letting , ,

, and following some similar steps in [12], we arrive easily
at the following:

(4)

Note that if , then

Observe that both and are integers less than . Since is
a multiple of and so is the LHS, the above congruence implies
that , and hence, . If, furthermore,

, then and this implies that
. Then, similarly, we have

and . Therefore, if , then (4) becomes trivial.
Now, we need the following two results, which are true

whether is even or odd. The first one is Theorem 4 of [3]:

Theorem 2 (Weil Bound for all ): Let be any multiplicative
character of and let , . Define the generalized
Kloosterman sum as follows:

Then

Note that the (twisted) Kloosterman sum in Theorem 4 of [3]
or in [27] is usually defined as for

, and the one in the above theorem is

when both and are not zero. Note also that the bound
does not depend on the value of or . Following bound for any
prime (even or odd) is also given by Weil [27]:

Theorem 3 (Weil): Let be a polynomial of degree
over with . Then

Now, we continue the calculation given in (4). For this, we
let, for ,

Then

Assume and . From Theorem 3, by letting
and since , we have

Similarly, we have the same when and .
Assume and , and observe that

if
otherwise.

Here, the sum is extended over all the multiplicative characters
over of order dividing . Therefore

-

Thus

This proves the upper bound (i) on the magnitudes of the
correlation.

For (ii), we assume that and suppose that
and in the beginning of this section are cyclically

equivalent. Then, there exist such that for
all , and hence, and have a trivial correlation value

This implies that

under our restrictions on . Thus, we proved that all the members
of are cyclically distinct with each other. Therefore,

and the theorem follows.

IV. EXAMPLES AND CONCLUSION

We consider two examples here. The first one is for ,
, so that and . Note that

. In this case, and the
max correlation magnitude is upper bounded by 18 by Theorem
1. It turned out that, using the irreducible polynomial ,
the true max is 14.00, which is achieved by two member se-
quences with cases and , which cor-
respond to two sequences and

, respectively. It turned out that
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TABLE I
COMPARISON OF WELL-KNOWN �-ARY SEQUENCE FAMILIES (� � � OR AN ODD PRIME)

TABLE II
MAXIMUM INTEGER VALUE OF � FOR SOME SMALL � AND �

the cross-correlation values of the two are all real and its profile
is given as

The second one is for , , so that
and . Note that

. In this case, and the max correlation mag-
nitude is upper bounded by 16 by Theorem 1. It turned out

that, using the irreducible polynomial , the true max
is 13.00, which is achieved by two member sequences with
cases and , which correspond to
two sequences and

, respectively. It turned out that the
cross-correlation values of the two are all real and its profile is
given as

Finally, we remark that each member of has the linear com-
plexity since both and have the linear com-
plexity .

For the purpose of comparison, we show various parameters
of -ary sequence families in Table I. Table II shows the max-
imum integer value of for some small and . Note that
must be a divisor of and no larger than .
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