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SUMMARY We apply the Hadamard equivalence to all the binary ma-
trices of the size m × n and study various properties of this equivalence
relation and its classes. We propose to use HR-minimal as a representative
of each equivalence class, and count and/or estimate the number of HR-
minimals of size m×n. Some properties and constructions of HR-minimals
are investigated. Especially, we figure that the weight on an HR-minimal’s
second row plays an important role, and introduce the concept of Quasi-
Hadamard matrices (QH matrices). We show that the row vectors of m × n
QH matrices form a set of m binary vectors of length n whose maximum
pairwise absolute correlation is minimized over all such sets. Some prop-
erties, existence, and constructions of Quasi-orthogonal sequences are also
discussed. We also give a relation of these with cyclic difference sets. We
report lots of exhaustive search results and open problems, one of which is
equivalent to the Hadamard conjecture.
key words: Hadamard equivalence, orthogonality, Quasi-orthogonal sig-
nal, Quasi-Hadamard matrix

1. Introduction

A Hadamard matrix of order n (or, size n × n) is defined as
an n × n matrix with the entries +1 or −1 such that

H · HT = nI,

where I is the n × n identity matrix [6], [20]. One impli-
cation of the above is that the rows of a Hadamard matrix
are orthogonal, and the set of rows form a set of orthogo-
nal vectors of +1’s and −1’s and all of the same length [20].
This is the key to their applications to the design of good
error-correcting codes and CDMA cellular communication
systems [2], [4], [7], [9]. After that, bandwidth and PAPR
problems are issued using Hadamard matrix and quasi-
orthogonal signal set that the correlation values among sig-
nals are near but not ensured as zero is considered in OFDM
systems and IEEE standards. However, many theoretical
topics about quasi-orthogonal signal set like the maximum
size are still open.

Given a Hadamard matrix of order n, one can transform
it into another by the following (Hadamard-preserving) op-
erations [20]: multiplying a column (or a row, resp.) by −1;
and/or permuting columns (or rows, resp.). The resulting
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matrix is also Hadamard, and it is said to be “equivalent” to
the original. In general, one can easily produce many dif-
ferent matrices which are equivalent to a given one by ap-
plying any combination of the above Hadamard-preserving
operations. On the other hand, it would be quite hard to
check whether two given Hadamard matrices of the same
size are Hadamard-equivalent [20]. The first elegant method
for equivalence check is studied at [8]. And after that, there
have been many results on the equivalence/inequivalence of
Hadamard matrices [10]–[13], [16], [18]. We note that [11]
and [12] calculated the number of inequivalent classes for
sizes 24 and 28, which would have been impossible by com-
puter, and very recently, [13] calculated the number partially
for sizes 32.

This paper applies the Hadamard equivalence to gen-
eral m × n binary matrices, and studies their equivalence
classes for quasi-orthogonality. To do this, we define and
use HR-minimal [14] as a representative of an equivalence
class, and discuss its properties. One interesting result
would be a characterization of binary matrices which are
very similar to Hadamard matrices in the sense that the row
vectors have minimum possible pairwise absolute correla-
tion. We name these as Quasi-Hadamard matrices, and these
include Hadamard matrices when m = n and whenever an
n×n Hadamard matrix exists. Some properties and existence
of QH matrices are also discussed. Another special types of
HR-minimals are H-minimals and symmetric H-minimals.
These are also characterized in various ways and by com-
puter.

Section 2 describes definition and notation that we use
throughout the paper, including the Hadamard equivalence
and the representative “HR-minimal” with some examples.
Section 3 develops various properties and existence of HR-
minimals. We will characterize the shape of them and iden-
tify some special properties of HR-minimals which deter-
mines orthogonality, and we define a special form for min-
imized absolute correlation called “Quasi-Hadamard matri-
ces.” Various properties of them are also discussed. Sec-
tion 4 discusses various properties and the number of equiv-
alent classes. We introduce HC-minimal and H-minimal,
and investigate various properties of equivalence classes in
terms of these representatives. Cyclic difference sets are
used to construct systematically some HR-minimals and
minimal QH matrices of square sizes. This relation is given
at the end of Sect. 4. Some bounds, some exact number, and
lots of exhaustive search results are also given in Sects. 3
and 4. Finally, Sect. 5 concludes this paper, with a list of
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open problems.

2. Hadamard Equivalence on Binary Matrices

Hadamard matrices have entries from {+1,−1}. By setting
up a suitable isomorphic relation, we may convert them over
the binary field {0, 1}. This can be done by x = (−1)y ∈
{+1,−1} for y ∈ {0, 1} or its inverse map. Throughout this
paper, we consider binary matrices over {0, 1}, but the dot-
product of two row vectors of a binary matrix will be cal-
culated over the complex, after converting first each en-
try into {+1,−1} by the above map. Then, in order to ap-
ply Hadamard equivalence to binary matrices, we change
slightly the way it is described from the one in Introduction,
which is essentially the same except it applies binary matri-
ces over {0, 1}:

Definition 1 Two {0, 1}-valued binary matrices A and B of
the same size m × n are said to be Hadamard-equivalent,
or simply, equivalent, and denoted by A ∼ B, if one can be
transformed into another by applying any combination of
the following operations:

1. [CC/CR] complementing a column (or row); and/or
2. [PC/PR] permuting columns (or rows).

We call these Hadamard-preserving operations also.

It is obvious that the binary relation defined in Definition 1
on the set of binary matrices of size m × n is indeed an
equivalence relation. Note that there can be as many as
n! × m! × 2n+m different binary matrices which are equiv-
alent to a given one. Thus, any equivalence class can have
up to so many members in it.

For Hadamard matrices, the key property is the orthog-
onality of its rows, and any Hadamard-preserving operations
will preserve the orthogonality of its row vectors. Here,
the orthogonality is checked by the dot-product of two rows
(consisting of +1’s and −1’s). For binary matrices over {0, 1}
with rows which are not orthogonal in general, we have to
find some similar measure which would be preserved by the
above operations and still useful in communication and cod-
ing problems. It turned out that it is the absolute value of the
same dot-product: given two binary vectors r and s of length
n, we define their absolute correlation as

Cor(r, s)
�
=

∣∣∣∣∣∣∣
∑

i

(−1)r(i)+s(i)

∣∣∣∣∣∣∣ , (1)

where r(i) is the i-th element of the binary vector r. Observe
that it is equal to |A − D|, where A is the number of agree-
ments and D is the number of disagreements between the
vectors r and s.

Proposition 1 The absolute correlation of the two rows of
a 2 × n binary matrix will be preserved by any Hadamard-
preserving operation in Definition 1.

proof. Recall that Cor = |A−D|. Note first that the values A

and D will not be changed by any PR, PC, CC, and also the
CR on both rows. Finally, CR on any one row will change
the value A to D and D to A so that the absolute correlation
remains the same. �

Corollary 1 Two equivalent m×n binary matrices have the
same profile of absolute correlations.

We now define a map from the set of m × n binary
matrices to the integers of the range from 0 to 2mn − 1 as
follows:

Definition 2 Let A = (a(i, j)) be an m × n binary matrix
whose (i, j)-entry is a(i, j), where i = 1, 2, ...,m and j =
1, 2, ..., n. Then,

ρ(A)
�
=

m∑
i=1

n∑
j=1

[
a(i, j)2n(m−i)+(n− j)

]
. (2)

The set of binary matrices of size m × n is in one-to-
one correspondence with the set of binary vectors of length
mn. Considering this relation and the fact that the binary
vectors of length mn can be lexicographically ordered, we
may summarize some important properties of the map ρ as
follows:

Theorem 1 [14] Let S be the set of binary matrices of size
m × n, and ρ be the map from S to the integers of the range
from 0 to 2mn − 1 in Definition 2. Then, we have the follow-
ing:

1. Order property: ρ induces a complete ordering. That is,
exactly one of ρ(A) < ρ(B), ρ(A) > ρ(B) or ρ(A) = ρ(B)
must be true for any A, B ∈ S.

2. 1−1 property: ρ is one-to-one. That is, we have ρ(A) =
ρ(B) if and only if A = B for any A, B ∈ S.

3. Existence of minimal element: Any subset S0 of S must
contain an element M0, which we call the minimal ma-
trix of S0, such that ρ(M0) < ρ(A) for any A ∈ S0. Fur-
thermore, since ρ is one-to-one, such a minimal matrix
is uniquely determined.

Now, we are ready to define the representative of the
equivalence class induced by the above equivalence relation:

Definition 3 The minimal matrix of an equivalence class,
which is uniquely determined as stated in Theorem. 1, is
called the Hadamard-row minimal matrix, or HR-minimal.
The ρ value of the HR-minimal is called the ρ value of the
equivalence class.

Example 1 All 16 binary matrices of size 2 × 2 are shown
in Fig. 1 with the color “black” and “white” denoting the
value 0 and 1 respectively. We often use this coloring
scheme to represent various binary matrices in this paper.
Note that the matrices in Class A are not Hadamard, with
the absolute correlation values between the two rows all
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Fig. 1 All the 2 × 2 binary matrices in two equivalence classes.

Fig. 2 Examples of the inequivalent HR-minimals.

equal to 2. Class B contains all the equivalent Hadamard
matrices of size 2 × 2. The matrix (abcd) in Fig. 1 has the ρ
value

ρ((abcd)) = (abcd)(2) = 23a + 22b + 2c + d.

Thus, Class A has the ρ value 0000(2) = 0, and Class B has
0001(2) = 1.

Example 2 Figure 2 shows all the inequivalent HR-
minimals of some small sizes. The number of inequivalent
classes and their ρ values are shown also. We note that
the examples with the maximum ρ values (those with under-
line) for a given size, which will be treated with a special
attention in Sect. 3. For sizes 2 × 2 and 4 × 4, they are in-
deed Hadamard matrices. Note also that all the 3 × 3 HR-
minimals are symmetric. For the size 4 × 4, only eight of
them are symmetric.

Remark 1 The definition of HR-minimal is the same as the
canonical form of a Hadamard matrix introduced in [13],
[16].

3. Properties HR-Minimals and Quasi-Hadamard Ma-
trices

In this section, we will investigate some interesting prop-
erties of HR-minimals and identify some special ones as
Quasi-Hadamard matrices. We first characterize the shape
and structure of HR-minimals:

Theorem 2 1. An HR-minimal is in, so called, a normal-
ized form. That is, its top row and left-most column

consist entirely of 0’s.
2. In an HR-minimal of size m×n, the weight of the second

row cannot exceed n/2. Furthermore, in its second row,
all the 0’s come to the left of all the 1’s. In its second
left-most column, all the 0’s come on top of all the 1’s.

3. An HR-minimal is row-sorted, and also, column-
sorted.

proof. 1) If the top row contains a 1, then complement the
column. The resulting matrix will have smaller ρ value.
Similarly for a 1 at the left-most column.

2) Recall that the top row contains 0 only. If any 1
comes to the left of a 0 in the second row, then permute the
columns so that all the 0’s come to the left of all the 1’s. The
resulting matrix has a smaller ρ value. If the weight of the
second row exceeds n/2, then complement the second row
and permute the columns so that all the 0’s come to the left
of all the 1’s. The property of the second column is proved
similarly.

3) Obvious. �

Remark 2 We believe that the weight of the second column
of an m×n HR-minimal need not be upper bounded by m/2,
though it is true for all the examples we have found by com-
puter. It could be true that it cannot exceed m/2, and we
leave this as an open problem.

Remark 3 Note that the converse of Item 3 in Theorem 2 is
NOT true in general. See the examples A and B below:

A =
(

000
011

)
∼
(

000
001

)
= B.

Trivially A is not an HR-minimal although it is row-and-
column-sorted.

A binary matrix may have multiple number of rows that
are the same. If these rows are not adjacent then the rows
are not sorted. Similarly for the same columns. This gives
the following:

Corollary 2 Two same rows of an HR-minimal must be ad-
jacent. So must be its two same columns.

If a not-all-zero row repeats more than the all-zero row
at the top of an HR-minimal, then these rows can be moved
to the top and some appropriate CCs will make them all-zero
rows. The result will have smaller ρ value than the original,
which is impossible.

Corollary 3 In an HR-minimal, the number of repetitions
of any row cannot exceed that of the all-zero row at the top.

Remark 4 We have conjectured that a similar statement to
Cor. 3 must hold for the columns in an HR-minimal. It
turned out that it is false by the following counter exam-
ple of size 6 × 6 HR-minimal in which the 4-th and the 5-th
columns are the same, (i.e., they repeat twice) but the left-
most all-zero column repeats only once:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000000
000000
000001
000110
001110
010110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
As long as all the rows are repeated the same number

of times, the HR-minimality will be preserved. Similarly for
the columns. For example in the following, B is obtained
from A by repeating all the rows twice and all the columns
three times:

A =
(

00
01

)
=⇒
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

000000
000000
000111
000111

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = B. (3)

Corollary 4 (Linear Expanding Construction) Repeating
each row k times and each column l times results in an HR-
minimal of size mk × nl if we start with an HR-minimal of
size m × n.

Corollary 5 (Add-Zero-Row Operation) We obtain an (m+
1) × n HR-minimal by adjoining the all-zero row to the top
of an m × n HR-minimal.

Note that repeating any other row not necessarily pre-
serves the HR-minimality. A similar statement regarding
the columns of HR-minimals turned out to be true, whose
proof is not as simple as the above:

Theorem 3 (Add-Zero-Column Operation) We obtain an
m × (n + 1) HR-minimal by adjoining the all-zero column
to the left-most of an m × n HR-minimal.

proof. Let A be an m × n HR-minimal and obtain the m ×
(n+1) matrix A′ by adjoining the all-zero column to the left-
most of A. Suppose that A′ is not an HR-minimal. Then,
there exists H′ ∼ A′ such that H′ is HR-minimal and we
must have ρ(H′) < ρ(A′). Delete the left-most column of H′
and call it H of the size m × n. From the structure of H′ and
A′, it is obvious that

ρ(H) < ρ(A). (4)

If H ∼ A, then (4) is impossible and therefore we are
done.

Now we assume that H � A. We now think of the op-
eration which converts A′ into the HR-minimal H′. What-
ever the operation might be, the final form H′ must have the
shape and structure described by Theorem 2, Corollaries 2
and 3. Especially, we would like to concentrate on the all-
zero added column on the left-most of A so that A′ has at
least two all-zero columns on the left. It is possible that they
are relocated from the left-most to some other column po-
sitions by some PC, they become not-all-zero columns by
some CR, some components may have been permuted by
some PR, but they must be adjacent in the final form H′.
Let’s obtain H′′ by deleting one of these columns from H′.
We simply note that the deleted column from H′ to obtain

H′′ is indeed the one that was originally adjoined to obtain
A′ from A (and possibly moved and/or changed to not-all-
zero column). Therefore, it is obvious that H′′ ∼ A. Since A
is an HR-minimal, we must have

ρ(A) ≤ ρ(H′′).
We now claim that

ρ(H′′) ≤ ρ(H).

To see this, simply observe that both H and H′′ are the re-
sults of deleting a column from H′. When you delete the
left-most all-zero column, you obtain H. When you delete
the column described earlier, then you obtain H′′.

Combining two inequalities above, we have ρ(A) ≤
ρ(H), which is a desired contradiction to (4). �

Proposition 2 If A is an m × n HR-minimal, then the (m −
1) × n matrix B obtained by deleting the bottom row of A is
also an HR-minimal.

proof. If there is an operation on B that results in smaller
ρ value than B, then the similar operation (with the bottom
row of A included) on A will also results in smaller ρ value
than A. �

Remark 5 We have conjectured, similar to Prop. 2, that
deleting the right-most column of an m×n HR-minimal gives
an m × (n − 1) HR-minimal. It turned out to be false by the
counter example A of size 5 × 6 shown in the following. The
5 × 5 matrix B obtained by deleting the right-most column
of A is not HR-minimal. We show also the equivalent HR-
minimal C of this:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
000000
000011
001100
010101
010110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =⇒ B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
00000
00001
00110
01010
01011

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00000
00001
00110
00111
01010

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = C.

Now we consider the absolute correlations given in (1)
of all possible pairs of rows of a given HR-minimal. Since
any HR-minimal is normalized, the top row must be the all-
zero row. Let w be the weight of its second row. Then the
absolute correlation of the top all-zero row and the second
row becomes |n − 2w|. We will show that this value is max-
imum over all possible pairs, though this maximum value
could occur from some other pairs.

Theorem 4 In an HR-minimal, the absolute correlation of
the top two rows cannot be exceeded by that of any other
pair of rows.

proof. Let c be the absolute correlation of the top two rows
of an HR-minimal A. If c = n, it implies the second row is
also the all-zero row and we are done since n is the trivial
maximum that cannot be exceeded by any pair. Thus, we
may suppose a pair of rows (other than the top two rows)
has the absolute correlation d with c < d ≤ n. The idea



1866
IEICE TRANS. FUNDAMENTALS, VOL.E95–A, NO.11 NOVEMBER 2012

is to permute the rows so that these two rows (with absolute
correlation d) come at the top, and then normalize the result,
and then permute the columns so that all the 0’s come to the
left of all the 1’s in the second row. Since the weight of
the column-sorted second row of B is smaller than A, the
resulting matrix B has a smaller ρ value than A. �

Let w be the weight of the second row of an HR-
minimal of size m × n. From Theorem 2, we know that w
cannot exceed n/2. Therefore, w ≤ (n − 1)/2 for odd n and
w ≤ n/2 for even n. Now, we have to distinguish two cases
where n is doubly-even and it is singly-even when m > 2:

Proposition 3 Let n ≡ 2 (mod 4), and A be an HR-minimal
of size m × n with m ≥ 2. Denote by w the weight of the
second row of A. (a) If w = n/2 (and hence n is even) then
m = 2. (b) If m > 2, then w ≤ n/2 − 1.

proof. If w = n/2 then the absolute correlation of the top
two rows is zero and this cannot be exceeded by any other
pair. Therefore, all the rows are orthogonal with each other,
and A must have rows of length which is a multiple of 4 if
it contains at least 3 rows. If m > 2 then the value w cannot
attain n/2 since the matrix cannot be a Hadamard matrix.
[20]. �

Now, we would like to identify some special equiva-
lence classes, whose representatives are quite similar to and
generalization of Hadamard matrices:

Definition 4 (Quasi-Hadamard Matrix) (a) An m×n equiv-
alence class containing an HR-minimal A is called Quasi-
Hadamard class, or QH class, if the weight w of the second
row of A is ether (n − 1)/2, n/2 or n/2 − 1 according to the
values of n and m as follows:

• when n is odd, w = (n − 1)/2 for all m ≥ 2;
• when n is even, we have distinguish two cases:

– when n ≡ 0 (mod 4),

∗ w = n/2 for all m ≥ 2;

– when n ≡ 2 (mod 4),

∗ w = n/2 for m = 2;
∗ w = n/2 − 1 for all m > 2.

(b) All the matrices in the equivalence class containing such
A are called Quasi-Hadamard matrices, or QH matrices.
The representative HR-minimal A in the class is called the
minimal QH matrix. (c) For all n ≥ 2, the function RQ(n) is
defined to be the maximum such that an RQ(n)×n QH matrix
exists.

In the item (c) of Definition 4, the function RQ(n) is
well-defined because of the following, which could be a
corollary of Prop. 2:

Corollary 6 (a) If A is an m × n minimal QH matrix then
the (m−1)×n matrix obtained from A by deleting its bottom
row is also a minimal QH matrix. (b) If there does not exist
an m×n minimal QH matrix, then neither does an (m+1)×n

minimal QH matrix.

Remark 6 1. When m = 2, there exists a unique m × n
QH class for all n ≥ 2. For 2 < m ≤ RQ(n), the number
of inequivalent m × n QH classes could be 1 or more.
Its exact behavior is an interesting open problem.

2. An m × n (minimal) QH matrix is indeed a (mini-
mal) Hadamard matrix whenever m = n and n ≡ 0
(mod 4). Otherwise, it gives the set of m row vectors
all of length n whose maximum pairwise absolute cor-
relation is minimized over all possible m-sets of binary
vectors of length n. This minimum value is either 2, 1,
or 0, according to the values of n and m. Note that the
minimal Hadamard matrix is the one with the minimum
ρ value in its equivalence class.

We now compare the ρ values of minimal QH matri-
ces with those of all other HR-minimals of the same size.
Since the second row of a minimal QH matrix has the largest
weight, the ρ value is relatively larger than those of HR-
minimals in any other non-QH classes. The following is a
direct consequence of Definition 4:

Proposition 4 An m × n minimal QH matrix has a larger ρ
value than any other HR-minimals of non-QH classes of the
same size.

Remark 7 1. When we consider the set of all the HR-
minimals of size m × n, and order them according to
the ρ values in increasing order, then all the minimal
QH matrices come at the end. Figure 2 shows this with
the maximum ρ value in underline.

2. Assume an n × n Hadamard matrix exists. Since a
Hadamard matrix is a very special QH matrix, Prop. 4
implies the following: the ρ value of an n × n mini-
mal Hadamard matrix is larger than that of any HR-
minimal which is not (equivalent to) a Hadamard ma-
trix.

We have done some series of computer search for the
values of RQ(n) for n ≤ 18 and the number of inequivalent
RQ(n) × n minimal QH matrices. The result is contained in
Table 1. Here, the notation R(w, n) generalizes RQ(n) and is
defined in Defition 6. Note that the existence of (minimal)
QH matrices of sizes 16 × 6, 16 × 10, and 16 × 17. Some
examples of these sizes are shown in Fig. 3.

Based on the values of RQ(n) and the examples we have
found by computer, we were able to find some interesting
properties of minimal QH matrices and their equivalence
classes. We will finish this section with some remarks and
discussions on this.

The value RQ(n) ≥ n seems to be true for most of n
except when n ≡ 1 (mod 8). We formulate this as a conjec-
ture:

Conjecture 1 There exists an n × n QH class for all the
positive integers n ≥ 2 except for n ≡ 1 (mod 8).
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Table 1 The value of R(w, n) and the number of R(w, n) × n inequivalent
matrices with ℘(·) = w.

w=2 3 4 5 6 7 8

n=4 4(1) - - - - - -

5 5(1) - - - - - -

6 16(1) 2(1) - - - - -

7 22(1) 8(1) - - - - -

8 ≥64 8(14) 8(1) - - - -

9 ? 16(5) 8(3) - - - -

10 ? ≥24 16(3) 2(1) - - -

11 ? ≥64 ≥17 12(1) - - -

12 ? ? ≥64 13(1) 12(1) - -

13 ? ? ? ≥16 13(1) - -

14 ? ? ? ≥20 ≥16 2(1) -

15 ? ? ? ≥64 ≥17 16(5) -

16 ? ? ? ? ≥64 ≥16 16(5)

17 ? ? ? ? ? ≥20 16(76)

18 ? ? ? ? ? ≥20 ≥20

19 ? ? ? ? ? ≥64 ≥20

Fig. 3 Examples of 16 × 6, 16 × 10, and 16 × 17 minimal QH matrices.

Remark 8 The truth of Conjecture 1 for n ≡ 0 (mod 4)
implies and is implied by the Hadamard Conjecture.

When n ≡ 2 (mod 4), the value RQ(n) seems to be
“much” larger than n in the table. For example, RQ(6) = 16
implies that there exist a lot of inequivalent 6 × 6 minimal
QH matrices. We just found that the number is 15 for size
6×6, and is 4718 for size 10×10. This number turned out to
be huge for the sizes 14×14 and 18×18, for which more than
1 million inequivalent examples are found by computer.

Remark 9 The repetition of rows and/or columns of a min-
imal QH matrix as in Cor. 4 does not in general result in
a minimal QH matrix, though it results always in an HR-
minimal of larger size. One example is shown in (3) where
A is a minimal QH matrix, and, in fact, it is the minimal 2×2
Hadamard matrix shown in Fig. 1, but B is not.

The RQ(n) can easily be lower bounded whenever a
Hadamard matrix exists of size near n:

Proposition 5 If an n×n Hadamard matrix exists, for n ≥ 4,
then RQ(n) = n, RQ(n − 1) ≥ n and RQ(n − 2) ≥ n.

proof. It is well known that any n× n Hadamard matrix can-
not be extended to (n+1)×n QH matrix. See [5] for example.

This gives RQ(n) = n whenever an n × n Hadamard matrix
exists. For the other two, simply delete the right-most col-
umn of the HR-minimal of an n × n Hadamard matrix once
and then twice. The resulting matrices may not be an HR-
minimal (recall Remark 5), but the pairwise absolute corre-
lations is upper bounded by 1 and 2, respectively. Transform
them into HR-minimals, which proves the bounds, since the
absolute correlation profile is preserved. �

It seems to be true that RQ(n − 1) = n whenever an
n×n Hadamard matrix exists, which is still open. The bound
RQ(n − 2) ≥ n in Prop. 5 seems to be very lose, and any
tighter bound will be an interesting result.

Conjecture 2 If an n × n Hadamard matrix exists, then
RQ(n − 1) = n.

Using Theorem 4, we can easily determine the maxi-
mum absolute correlation value of a given matrix A if we
can find its HR-minimal. Otherwise, we have to check the
absolute correlations of all the row-pairs of A.

Definition 5 Given an m×n binary matrix A, we define ℘(A)
to be the weight of the second row of the HR-minimal of A.

Given a binary matrix A, we denote by cM the maximum
over all the absolute correlations of the row-pairs of A. Con-
sider the HR-minimal H of A. Then the absolute correlation
of the top two rows of H must be cM. Denote by w the
weight of the second row of H. Then we see n − 2w = cM

or w = (n − cM)/2. Thus, we have ℘(A) = w if and only if
n − 2w is the maximum absolute correlation of all the row-
pairs of A. Note also that ℘(A) is the value shared by all the
matrices belonging to the equivalence class of A.

Definition 6 We define R(w, n) to be the maximum such that
there exists an R(w, n) × n matrix A with w = ℘(A).

Given a length n, the fact that R(w, n) = k implies that (1)
there exists a k × n matrix A with ℘(A) = w but (2) no (k +
1) × n matrix B with ℘(B) = w. Note also that RQ(n) =
R(n/2 − 1, n) if n ≡ 2 (mod 4), and RQ(n) = R(�n/2, n)
otherwise. Now, We can determine R(w, n) directly for some
small values of w as in the following theorem.

Theorem 5 1. R(0, n) = ∞ where n ≥ 1.
2. R(1, n) = 2n−1 where n ≥ 1.
3. R(n, 2n) = 2 where n is odd.
4. R(2k, 2k+1) = 2k+1 where k ≥ 0.
5. (Hadamard conjecture) R(n, 2n) = 2n where n is even.

proof.

1. Every all-zero matrix is HR-minimal.
2. The HR-minimal matrix A of size R(1, n) × n with
℘(A) = 1 must be of the form in which there should
not be the same rows and no two rows are complemen-
tary of each other.

3. There cannot be three pair-wise orthogonal rows of
length 2 (mod 4).
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4. 2k × 2k Hadamard matrix always exists for all k ≥ 0.
5. Obvious. �

Next we give some bounds on R(w, n). The proofs contain
some constructions of new quasi-orthogonal sequences.

Theorem 6 1. R(w, n) ≤ R(w, n + 1) where w ≥ 0 and
n ≥ 1. (Non-decreasing in n)

2. R(w, n) ≤ R(w + 1, n + 1) where w ≥ 0 and n ≥ 1.
3. R(w, n) ≥ R(w + 1, n) where w ≥ 0 and n ≥ 1. (Non-

increasing in w)
4. R(w, n) ≥ 2n−1∑w−1

i=0 (n
i)

where w ≥ 0 and n ≥ 1.(Trivial

bound)
5. R(min(w1n2, w2n1), n1n2) ≥ R(w1, n1)R(w2, n2) where
w1, w2 ≥ 0 and n1, n2 ≥ 1. (Kronecker expansion)

6. R(min(w1, w2), n1 + n2) ≥ 2R(w1, n1)R(w2, n2) where
w1, w2 ≥ 0 and n1, n2 ≥ 1. (u+v expansion)

7. R(2k, n) ≥ 2k+1R(2k, n − 2k) ≥ 2
(k+1)n

2k −(k+1) where n ≥
3 · 2k, n ≡ 0 (mod 2k) and k ≥ 0.

proof.

1. Using Theorem 3, we can make R(w, n)× (n+1) matrix
A with w = ℘(A) given an R(w, n) × n matrix.

2. Deleting the rightmost column doesn’t increase the ab-
solute correlation more than 1.

3. Obvious by 1) and 2).
4. Given any binary vector r of length n, there could be

at most 2
∑w−1

i=0

(
n
i

)
vectors whose absolute correlation

with r is at least n−2w. This number counts all the vec-
tors in a Hamming distance w−1 or less from r and their
complements. Therefore, if we have R(w, n) binary
vectors of length n whose pairwise absolute correlation
is at most n−2w, then, since there are exactly 2n binary
vectors of length n, we have 2n/R(w, n) ≤ 2

∑w−1
i=0

(
n
i

)
.

5. Let A1 as an R(w1, n1)× n matrix satisfying ℘(A1) = w1

and A2 as an R(w2, n2)×n matrix satisfying ℘(A2) = w2.
Now, we can make R(w1, n1)R(w2, n2) × n1n2 matrix
B = A1 ⊗ A2 when the symbol ⊗ is a Kronecker prod-
uct using XOR operation instead multiplying. Next we
choose a-th and b-th row of the B and calculate their
absolute correlation. We can easily find that the value
is not larger than n2(n1−2w1) if a ≡ b (mod R(w2, n2)),
and not larger than n1(n2 − 2w2) otherwise.

6. Let A1 as an R(w1, n1)× n matrix satisfying ℘(A1) = w1

and A2 as an R(w2, n2) × n matrix satisfying ℘(A2) =
w2. We can make an 2R(w1, n1)R(w2, n2) × (n1 + n2)
matrix B with ℘(B) = min(w1, w2) as follows. Let
A∗1 = a1(� i

2R(w2,n2) �, j) where A1 = a1(i, j). The
size of A∗1 is 2R(w2, n2)R(w1, n1) × n1. Now, we
can make a 2R(w2, n2)R(w1, n1) × n2 matrix C =[
AT

2 | ∼ AT
2 |AT

2 | ∼ AT
2 |...
]T

. Finally we construct B as

B =
[
A∗1|C
]
. Using the similar approach in Kronecker

expansion, we can find that ℘(B) = min(w1, w2).
7. We start from the 2k+1 × 2k+1 Hadamard matrix and use

induction. At first, we let an R(2k, n−2k)× (n−2k) ma-
trix B with ℘(B) = 2k. Let A as a 2k+1R(2k, n − 2k) × 2k

matrix and A = a(i, j) = h(� i
2R(2k ,n−2k) �, j) where H =

h(i, j) is a 2k×2k Hadamard matrix. Now, we can make
a 2k+1R(2k, n − 2k) × n matrix C =

[
A|
[
[A|0] ⊕ BT

]]
where BT is a 2k+1R(2k, n − 2k) × n − 2k matrix with

the form as BT =
[
BT | ∼ BT |BT | ∼ BT |...

]T
, 0 is a

2k+1R(2k, n − 2k) × 2k all-zero matrix, and ⊕ is XOR
operation (or modulo 2 addition) of all elements of
two matrices with the same size. Using the similar
approach in Kronecker expansion, we can find that
℘(C) = 2k. The last term of the inequality is a cu-
mulated form by adopting this bound, started from the
2k+1 × 2k+1 Hadamard matrix. �

We also have done computer search for R(w, n) for
some small w and n. Table 1 shows the result.

4. Properties of Equivalence Classes and H-Minimals

We will begin this section by considering the transpose of
HR-minimals. We denote by AT the transpose of the matrix
A.

Definition 7 If a binary matrix AT is an HR-minimal (of
some equivalence class) then we call A a Hadamard-column
minimal matrix, or HC-minimal. If an HR-minimal is also
an HC-minimal, it is called Hadamard-row-column mini-
mal, or H-minimal.

Remark 10 An HR-minimal is not always an HC-minimal.
Following show three examples of HR-minimals, all of
which are not HC-minimals:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00000
00000
00001
00110
00110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00000
00001
00110
01010
01100

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

000000
000001
000110
001110

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (5)

This implies that not every equivalence class contains
the H-minimal, though it always contains both an HR-
minimal and an HC-minimal.

We denote by NE(m, n) the number of inequivalent
classes of binary matrices of size m × n. Note that this is
the same as the number of inequivalent HR-minimals of the
same size.

Proposition 6 (a) For a given size m × n, the number of
HR-minimals is the same as that of HC-minimals. (b)
NE(m, n) = NE(n,m) for any positive integers m and n.

proof. (a) Both of them is equal to the number of inequiva-
lent classes of binary matrices of size m × n. (b) The trans-
pose of any m × n HC-minimal is an n × m HR-minimal.

�

Proposition 7 NE(m, n) is monotonically non-decreasing
as m or n increases.
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Table 2 Number of inequivalent HR-minimals.

n=1 2 3 4 5 6 7 8 9

m=1 1 *
2 1 2
3 1 2 3
4 1 3 5 12
5 1 3 6 18 39
6 1 4 9 35 101 388
7 1 4 11 54 228 1343 8102
8 1 5 15 94 551 5083 53775 656108
9 1 5 18 140 1221 18366 355773 8225529 199727714
10 1 6 23 224 2746 66524 2324945 101773978 ?
11 1 6 27 326 5850 231189 14591376 ? ?
12 1 7 34 495 12338 780372 87435412 ? ?
13 1 7 39 699 24994 2526857 ? ? ?
14 1 8 47 1012 49708 7884776 ? ? ?
15 1 8 54 1397 95771 23655568 ? ? ?
16 1 9 64 1955 180759 68431000 ? ? ?
17 1 9 72 2634 332252 191016328 ? ? ?
18 1 10 84 3579 598631 ? ? ? ?
19 1 10 94 4728 1054614 ? ? ? ?
20 1 11 108 6271 1823859 ? ? ? ?
21 1 11 120 8132 3093591 ? ? ? ?
22 1 12 136 10563 5160004 ? ? ? ?

* We omit the case m < n since NE (m, n) = NE (n,m).

proof. Any (m − 1) × n HR-minimal will induce an m ×
n HR-minimal by the add-zero-row in Cor. 5. Therefore,
NE(m, n) ≥ NE(m − 1, n) for any m. Similarly for n by the
add-zero-column in Theorem. 3. �

Trivially, we have NE(1, n) = 1 for all the positive inte-
gers n. For m = 2 and m = 3, we have the following:

Theorem 7

NE(2, n) =
�n/2∑
a=0

1 = �n/2 + 1,

NE(3, n) =
�n/2∑
a=0

�(n−a)/2∑
b=�a/2�

�a/2∑
c=max(0, a−b)

1.

proof. Consider the case m = 2. By the item 2 in Theorem 2,
any HR-minimal of size 2 × n looks like the following:

0 0 0 · · · 0 0 0︸������������︷︷������������︸
n

0 · · · 0︸��︷︷��︸
n−a

1 · · · 1︸��︷︷��︸
a

(6)

Furthermore, the value of a must be in the range 0 ≤ a ≤
� n

2 , which proves the formula. The case m = 3 is proved in
Appendix. �

Now, we derive an interesting corollary about the se-
quence of NE(3, n), whose proof is given also in Appendix.

Corollary 7 NE(3, n) is essentially the same as the number
of partitions of integer n into at most 4 parts. [19]

Remark 11 Corollary 7 gives another interpretation of the
sequence in [19]. In fact, NE(2, n) is the same as the number
of partitions of n into at most 2 parts. However, NE(4 = k, n)
is not the same as the number of partitions of n into at most

Table 3 Number of H-minimals.
n=4 5 6 7 8

m=4 12 *
5 18 37
6 34 93 318
7 53 197 968 4624
8 90 448 3109 23518 200127
9 131 917 9549 118346 ?
10 205 1913 29244 ? ?
11 292 3728 85549 ? ?
12 434 7285 ? ? ?

* We omit the case m < n since the numbers at size (m, n) and (n,m) are same.

8 = 2k−1 parts, in some complicated reasons.

We have performed an exhaustive search for all the HR-
minimals of size m × n for some small m and n, and the
result is shown in Table 2. The question marks in this table
represent more than 200 million. We note that the values of
NE(2, n) and NE(3, n) agree with those given in Theorem 7.

We have also performed an exhaustive search to find
the number of different H-minimals, and shown the result
in Table 3. We note that, except for the cases (m, n) =
(4, 4), (4, 5), (5, 4) which are shown in underline in both ta-
bles, the number of m × n H-minimals is always less than
that of m × n HR-minimals whenever m, n ≥ 4. We will
show this eventually in the following. We begin by the fol-
lowing proposition which is an easy case but with tedious
checks.

Proposition 8 If m ≤ 3 or n ≤ 3, then all the HR-minimals
of size m × n are HC-minimals, and hence, H-minimals.

proof. It is obviously true for any 1 × n HR-minimals and
any 2 × n HR-minimals. Consider a 3 × n HR-minimal in
(A· 1). We know from the proof of Theorem 7 that
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ a ≤ �n/2,
�a/2� ≤ b ≤ �(n − a)/2,
max(0, a − b) ≤ c ≤ �a/2.

(7)

Now, going through some similar process as in the proof
of Theorem 7, we check that these conditions are necessary
and sufficient for (A· 1) to be an HC-minimal. �

We now consider what would happen when we add the
all-zero row (Cor. 5) on top of an HR-minimal which is not
an HC-minimal.

Proposition 9 The add-zero-row operation on top of an m×
n HR-minimal A results in an (m+1)×n HR-minimal which
is not an HC-minimal if A is not an HC-minimal.

proof. We call the result B and suppose that B is an HC-
minimal, and hence BT is an HR-minimal. Let XT be the
HR-minimal in the class to which AT belongs. We note that
AT � XT and hence A � X but A ∼ X. Now, the add-
zero-column on XT gives the n × (m + 1) HR-minimal YT

by Theorem 3. Then, observe that BT ∼ YT since AT ∼ XT .
Since both BT and YT are HR-minimals, we must have B =
Y and hence A = X, which is a contradiction. �

Remark 12 It is obvious that the add-zero-column opera-
tion on the left-most of an m× n HR-minimal A results in an
m × (n + 1) HR-minimal which is not an HC-minimal if A is
not an HC-minimal.

Theorem 8 Every m × n HR-minimal is an HC-minimal
(and hence, H-minimal) if and only if m ≤ 3, n ≤ 3, or
(m, n) = (4, 4), (4, 5) or (5, 4).

proof. Prop. 8 shows every m × n HR-minimal is an HC-
minimal for m ≤ 3 or n ≤ 3. By computer search, we con-
clude also that all the HR-minimals are HC-minimals for the
sizes 4 × 4, 4 × 5, and 5 × 4, which are shown in both Ta-
bles 2 and 3 in underline. Now, assume that m ≥ 4, n ≥ 4
and m + n ≥ 10, and we note the three examples of HR-
minimals in (5), which are not HC-minimals, of sizes 5 × 5,
5 × 5 and 4 × 6, respectively. The add-zero-row operation
(Cor. 5) k times on C will give a (4+ k)× 6 HR-minimal for
all k ≥ 1, which is not an HC-minimal by Prop. 9. All these
can be extended to (4+ k)× (6+ l) HR-minimals by the add-
zero-column operation in Theorem 3, which are neither HC-
minimals since all the (4+ k) × 6 ones are not HC-minimals
in the beginning. Similarly for the sizes 5× (5+ l) using the
first two examples in (5). �

We now concentrate on the diagonal entries in Tables 2
and 3 (shown in bold type). They represent the number of
HR-minimals and H-minimals of square sizes, respectively.
We have also done some search for symmetric H-minimals
of square sizes, and the result is shown in Table 4 with vari-
ous ratios.

It is obvious by the add-zero-row and add-zero-column
operations that the the number of n × n H-minimals or sym-
metric H-minimals monotonically increases as n increases.
It would be interesting in the future to determine how fast

Table 4 Number of H-minimals and symmetric H-minimals.

Size NE NH NS NH/NE NS/NE NS/NH

1 × 1 1 1 1 1.000 1.000 1.000

2 × 2 2 2 2 1.000 1.000 1.000

3 × 3 3 3 3 1.000 1.000 1.000

4 × 4 12 12 8 1.000 0.667 0.667

5 × 5 39 37 19 0.950 0.487 0.514

6 × 6 388 318 70 0.820 0.180 0.220

7 × 7 8102 4624 336 0.571 0.415 0.727

8 × 8 656108 200127 2675 0.305 0.041 0.134

• NE: Total Number of Equivalence Classes
• NH: Number of Classes containing H-minimal

• NS: Number of Classes containing Symmetric H-minimal

(or slowly) it increases as n increases.
We will finish this section by summarizing this.
The all-zero matrix is an HR-minimal, HC-minimal,

and symmetric H-minimal for all n × n. The 2 × 2 matrix
(00; 01) can be extended to n × n with ρ value equal to 1
by add-zero-row and add-zero-column. They are all HR-
minimals, HC-minimals, and symmetric H-minimals. There
are many possibilities in this way to extend the size but they
are all trivial in the sense that eventually the all-zero rows or
all-zero columns dominate.

We now consider some non-trivial cases. Let Iv be the
v × v identity matrix. Flip this matrix so that the diagonal
comes in the other direction. Finally, complement the right-
most column and the bottom row so that it becomes normal-
ized. It is easy to check that the result is an HR-minimal
with the weight of its second row equals to 2, and hence the
pairwise absolute correlation of the rows is upper bounded
by v − 4.

The above idea can be generalized to construct an v× v
HR-minimal. For this we consider a cyclic (v, k, λ) differ-
ence set D [1], [3], [4], [20]. It is a k-subset of the integers
mod v, such that the equation x − y ≡ d (mod v) has ex-
actly λ solution pairs (x, y), x, y ∈ D for all the non-zero
residues d mod v. It is well-known that the characteristic
sequence {ai} of length v of a cyclic (v, k, λ) difference set
D has two-level periodic autocorrelation all of whose out-
of-phase values are the constant given as v − 4(k − λ). This
value is the dot-product of the sequence-vector of length v
and any of its cyclically shifted versions [1], [3], [4], [20].

Consider a v × v matrix A given by the following:

1. Construct a cyclic (v, k, λ) difference set D and its char-
acteristic sequence {ai} of length v.

2. Use the sequence {ai} of length v as a top row of the
matrix A.

3. Fill the remaining rows of A by all the cyclic shifts of
its top row.

Then, v rows of A form a set of v binary vectors of length
v such that the pairwise dot-product is a constant v − 4(k −
λ). Therefore, the minimal matrix in the equivalence class
containing A is an HR-minimal, whose second row has the
weight 2(k − λ). This proves the following:

Proposition 10 If a cyclic (v, k, λ) difference set exists, then
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there exists a v × v HR-minimal whose second row has the
weight 2(k − λ), and all the pairwise absolute correlations
of the rows are constant |v − 4(k − λ)|.
We note that the top row of the identity matrix of size v × v
earlier is a characteristic sequence of a trivial cyclic differ-
ence set, where k = 1 and λ = 0 and D = {0}.

The HR-minimal in the above proposition will be, in
fact, a v × v minimal QH matrix if and only if w = 2(k − λ)
satisfies the condition in Definition 4 with n = m = v. One
famous such case would be when the cyclic difference set
has parameters v = 4t − 1, k = 2t − 1 and λ = t − 1 for
some integer t, and it is called a cyclic Hadamard difference
set of length v. The connection between this with a cyclic
Hadamard matrix of order v + 1 is well-known [1], [3], [4],
[15], [20]. If we use a cyclic Hadamard difference set D of
length v in constructing the matrix A above, then the pair-
wise absolute correlation is a constant 1 and the minimal
matrix in the equivalence class containing A is a minimal
QH matrix of size v × v. This proves the following:

Corollary 8 If a cyclic Hadamard difference set of length v
exists, then there exists a v × v minimal QH matrix.

We note finally that the above v × v minimal QH matrix in
Cor. 8 can be extended to a (v+1)×(v+1) minimal Hadamard
matrix by adjoining the all-zero row at the top and all-zero
column on the left-most. This is called a Hadamard matrix
of “cyclic type.”

5. Concluding Remarks

In this paper, we proposed a new problem on the classi-
fication of binary matrices with respect to the Hadamard
equivalence. In the development, we have introduced HR-
minimals and Quasi-Hadamard matrices, and investigated
the properties of various equivalence classes of binary ma-
trices.

A Quasi-Hadamard matrix of size m × n gives a set
of m binary vectors of length n whose maximum pairwise
absolute correlation is minimized over all the m-sets of such
binary vectors.

We finish this paper with a list of some open problems
for the readers:

1. Find a systematic construction for m × n HR-minimals
or (minimal) QH matrices, other than indirectly using
some cyclic difference sets. (Sect. 4)

2. The weight of the second left-most column of an m× n
HR-minimal cannot exceed m/2. (Remark 2)

3. There exists an n × n minimal QH matrix for all n ≥ 2
except for n ≡ 1 (mod 8). (Conjecture 1)

4. If an n × n Hadamard matrix exists for n ≥ 4, then
RQ(n − 1) = n. (Conjecture 2)

5. Determine the value R(w, n) for any w, n.
6. Determine the number of inequivalent m×n QH classes

for 2 < m ≤ RQ(n).

7. Determine the value NE(m, n) for any m > 3. See The-
orem 7 and Tables 2 and 3.

8. Determine the number of n×n H-minimals or symmet-
ric H-minimals (Table 4). Or else, determine how fast
they grow as n increases.
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Appendix A: Proof of the formula NE(3, n)

Consider the case m = 3. Since any 3 × n HR-minimal
must have the top two rows described by Theorem 2, and
can be reduced to a 2 × n HR-minimal by Prop. 2, we have
the following situation, including some integer variables a,
b, and c:
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0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0︸���������������������������������︷︷���������������������������������︸
n

0 0 0 · · · 0 0 0︸������������︷︷������������︸
n−a

1 1 1 · · · 1 1 1︸������������︷︷������������︸
a

0 · · · 0︸��︷︷��︸
n−a−b

1 · · · 1︸��︷︷��︸
b

0 · · · 0︸��︷︷��︸
a−c

1 · · · 1︸��︷︷��︸
c

(A· 1)

From the same reason as in the proof of Theorem 2, the
values a, b, and c are restricted to the following:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ≤ a ≤ � n
2 

0 ≤ b ≤ � n−a
2 

0 ≤ c ≤ � a
2 

(A· 2)

Now, consider all the possible equivalent 3×n matrices with
the one in (A· 1). They are obtained by taking one of six
permutations of three rows, complementing those columns
with the top entry 1 if necessary, complementing the sec-
ond and/or third rows, and then finally taking the column-
permutation so that the final form looks like the following:

0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0︸���������������������������������︷︷���������������������������������︸
n

0 0 0 · · · 0 0 0︸������������︷︷������������︸
n−d

1 1 1 · · · 1 1 1︸������������︷︷������������︸
d

0 · · · 0︸��︷︷��︸
n−d−e

1 · · · 1︸��︷︷��︸
e

0 · · · 0︸��︷︷��︸
d− f

1 · · · 1︸��︷︷��︸
f

. (A· 3)

The values of d, e, and f are shown below in each cell of
the table as a column, where the top row represents six per-
mutations of three rows and the left-most column represents
four CRs:

PRs \ CRs - 3 2 23

a a n − a n − a
(123) b n − a − b c a − c

c a − c b n − a − b
b + c b + c n − b − c n − b − c

(132) a − c n − a − b c b
c b a − c n − a − b
a a n − a n − a

(213) b n − a − b a − c c
a − c c b n − a − b

a + b − c a + b − c n − a − b + c n − a − b + c
(231) c n − a − b a − c b

a − c b c n − a − b
b + c b + c n − b − c n − b − c

(312) a − c n − a − b b c
b c a − c n − a − b

a + b + c a + b − c n − a − b + c n − a − b + c
(321) c n − a − b b a − c

b a − c c n − a − b

In order for the 3×n matrix in (A· 1) be an HR-minimal,
the values d, e, and f in (A· 3) must satisfy the following:

• d ≥ a,
• if a = d then e ≥ d, and
• if a = d and b = e then f ≥ c.

Substituting the values of d, e, f in the above table into these
conditions gives various new conditions for a, b, and c. For
example, for the value (d, e, f ) = (b + c, a − c, c) in the cell
of the table corresponding to no-CR and (132), we have:

• b + c ≥ a, which is a new condition;
• if b + c = a, then a − c ≥ b, which is always true;

• if b + c = a and a − c = b, then c ≥ c, which is always
true.

Going through all the twenty-four cases, similarly, gives
some more new conditions, all of which are compactly sum-
marized as the following two:{ � a

2 � ≤ b,
a − b ≤ c.

(A· 4)

Now, NE(3, n) is exactly the same as the number of differ-
ent triples of (a, b, c) satisfying the conditions in (A· 2) and
(A· 4). �

Appendix B: Proof of Cor.7

We can make an integer sequence (n−a−b, b, a− c, c) from
(A· 1). By the proof, in an HR-minimal the inequality n −
a − b ≥ b ≥ a − c ≥ c ≥ 0 holds. So it becomes a kind of
partitions of integer n into at most 4 parts. Moreover, two
different 3 × n HR-minimals have different sequence since
a, b, and c can’t be changed to make same sequence. Also,
every partitions can make corresponding integer sequence
and unique HR-minimal since the sorting condition n − a −
b ≥ b ≥ a − c ≥ c ≥ 0 ensures b + c ≥ a and b ≥ c. So there
is a one to one correspondence between 3 × n HR-minimals
and partitions of integer n into at most 4 parts. �
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