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Abstract— In this paper, we extend the construction by
Yu and Gong for families of M-ary sequences of period q − 1
from the array structure of an M-ary Sidelnikov sequence of
period q2 − 1, where q is a prime power and M|q − 1. The
construction now applies to the cases of using any period qd − 1
for 3 ≤ d < (1/2)(

√
q − (2/

√
q) + 1) and q > 27. The proposed

construction results in a family of M-ary seqeunces of period q−1
with: 1) the correlation magnitudes, which are upper bounded by
(2d −1)

√
q +1 and 2) the asymptotic size of (M −1)qd−1/d as q

increases. We also characterize some subsets of the above of size
∼(r − 1)qd−1/d but with a tighter upper bound (2d − 2)

√
q + 2

on its correlation magnitude. We discuss reducing both time
and memory complexities for the practical implementation of
such constructions in some special cases. We further give some
approximate size of the newly constructed families in general
and an exact count when d is a prime power or a product of
two distinct primes. The main results of this paper now give
more freedom of tradeoff in the design of M-ary sequence family
between the family size and the correlation magnitude of the
family.

Index Terms— Sidelnikov sequences, polyphase sequences,
non-binary sequences, sequences for GNSS, family of sequences
with good crosscorrelation, cyclotomic cosets.

I. INTRODUCTION

PSEUDO-RANDOM sequences with good correlation
property play some key roles in most of the commu-

nications engineering and cryptography [1], [7], [10], [16],
[33], [36]. For example, sequences with good autocorrelation
property have been used in various synchronization sub-
systems and RADAR systems [27], [29], [38]. Binary and/or
non-binary sequence families with good auto and cross cor-
relation properties have been used in various wireless multi-
user multi-access communications including CDMA cellular
systems [17], frequency hopping spread spectrum commu-
nication systems [3], [5], and Global Navigation Satellite
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Systems (GNSS) such as GPS [32] from U.S. Department of
Defense and Galileo [6] from European Union and European
Space Agency.

These sequences or sequence families are called pseudo-
random because they look very much random for the third
party observers but they are generated completely by some
deterministic algorithms [37]. Required randomness of these
sequences are determined by the application, but they usu-
ally include uniform distribution of each alphabet, run-length
distribution, good correlation property, large family size, and
sometimes, higher non-linearities for cryptographic appli-
cations [9], [37]. Non-binary sequence families with large
size and good randomness properties have been studied for
long time, and we now have various known families con-
structed by, for example, Trachtenberg [39], Helleseth [15],
Kumar and Moreno [25], Kumar et al [24], Chu [2], [18],
Gong [12], Anand and Kumar [1], Kim et al [20] and its
generalization by Kim, Chae and Song [19]. These all achieve
some of various upper bounds on the correlation magnitude
and have been improved to fit the alphabet size for various
applications and to the direction of maximizing the family size.

For a prime power q = pm and a positive integer M
such that M|q − 1, Sidelnikov in 1969 [35] introduced M-ary
sequences (called the Sidelnikov sequences) of period q − 1,
and showed that the non-trivial autocorrelation magnitudes are
upper bounded by 4 regardless of M and q . It is interesting
to note that binary Sidelnikov sequences was re-discovered
later in [26] and had been refered to as ‘Sidelnikov-Lempel-
Cohn-Eastman sequences’ for a while [31]. Sidelnikov [35]
also introduced so called M-ary power residue sequences of
period p, for a prime p and M|p−1 with good autocorrelation
property.

In 2006 [22] and subsequently in 2007 [21], for the first
time, some results of designing sequence families with low
crosscorrelation have been presented using power residue
sequences and/or Sidelnikov sequences. The key idea was to
consider the sequences using all distinct primitive elements
of the field. It turned out that one can equivalently obtain all
these sequences by multiplying a constant to each and every
term of a given sequence. A weak point of this design is that
the set size is not large enough (only M − 1) even though the
bound on their correlation magnitudes is optimal in the sense
of Welch [42].

The improvement of enlarging the set size came from the
idea of binary Gold sequence construction [8]. This result
is first appeared in [14] and [23]. Not only considering all
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the constant-multiples of a Sidelnikov sequence, but also
they added term-by-term additions of a (constant-multiple of)
Sidelnikov sequence and its some cyclic shifts. Unlike
the methods in [21], in order to prove the low correlation
property of the proposed family of sequences, they both
used Weil bound [41] on exponential sums, which was used
in [34] to prove the conjecture appeared in [13]. This idea
of using shift-and-add construction was fully generalized
in [43] not only for Sidelnikov sequences but also for power
residue sequences.

New horizon in this line of research has appeared by
Yu and Gong [44] in 2010 by observing the (q − 1)× (q + 1)
array structure of a (longer period) Sidelnikov sequence of
period q2 − 1. Note here that the number of columns in
the array is q + 1 = (q2 − 1)/(q − 1). They identified
cyclically inequivalent column sequences (of length q − 1) of
the array, and constructed a family of non-binary sequences
with good correlation property. The family size in [44] is
almost comparable to (in fact, slightly bigger than) those
in [14] and [23], but this is truly a new construction.

This paper is a result of an attempt to extend the construc-
tion in [44]. We study the array structure of (much longer
period) Sidelnikov sequences of period qd − 1 for d ≥ 3 and
q > 27, where the array now has size (q − 1) × ( qd−1

q−1 ),
and investigate the cyclic equivalence as well as sub-period
structure of column sequences in order to construct a series
of some good families of M-ary sequences. As a result,
we propose two constructions WITH and WITHOUT the
condition gcd(d,M) = 1. We furthermore characterize a
subset of one of the construction with slightly tighter bound on
the correlation magnitudes. These would enable one to apply
the constructions to much more cases of the period qd − 1.

The resulting families have various sizes according
to d , M , q , and the number of representatives of q-cyclotomic
cosets mod qd−1

q−1 . We note that the families here have sizes
approximately given by (M − 1)qd−1/d (or (r − 1)qd−1/d
for some subsets, where r ≥ 2 is a divisor of gcd(d,M)) for
given M and d as q increases, and has upper bound given
by (2d − 1)

√
q + 1 (or (2d − 2)

√
q + 2 for the subsets) on

their correlation magnitudes. Note that both the size and the
bound increase as d increases. Therefore, it gives much more
freedom of trade-off in the design of sequence family between
the size and the maximum correlation magnitude.

This paper is organized as follows. Section II intro-
duces some preliminaries including Sidelnikov sequences,
q-cyclotomic cosets mod qd−1

q−1 , crosscorrelation, and Weil
bound. Section III presents main results of this paper.
Section III-A investigates the properties of column sequences
and Sections III-B and III-C describe two main constructions.
We count the proposed family size exactly for some special
cases of d in Section III-D with one detailed example in
Table II. We give some analysis on asymptotic values of this
in Appendix. Section III-E discusses some practical issues on
memory and time complexities for the constructions in some
very special cases. Section IV gives brief concluding remarks
as well as a table of comparison with previously constructed
M-ary sequence families.

II. PRELIMINARIES

A. Notation and Convention

We will fix the following notation throughout the paper:

• p: a prime number
• q: a prime power pm with a positive integer m
• � = 1 when q is odd and � = 2 when q is even.
• G F(q): the finite field with q elements
• G F(qd): the finite field with qd elements with d ≥ 2
• G F(q)∗ = G F(q)\{0}: the multiplicative group of G F(q)
• M: a divisor of q − 1 with M ≥ 2
• ωM = exp( j 2π

M ) where j = √−1
• α: a fixed primitive element of G F(qd)

• β = α(q
d−1)/(q−1): the primitive element of G F(q)

obtained from α in G F(qd)
• N : the norm function from G F(qd) to G F(q) given by

N(x) =
d−1∏

i=0

xqi = x
qd −1
q−1

• ψ: the multiplicative character of G F(q) of order M
defined by

ψ(x) = exp

(
j
2π

M
logβ x

)
= ω

logβ x
M

• We keep logβ(0) = 0 and ψ(0) = 1 in this paper for
convenience.

B. Sidelnikov Sequences

Definition 1 [35]: For any fixed primitive element β
of G F(q), let Dk = {βMi+k − 1 | 0 ≤ i < q−1

M }. Then an
M-ary Sidelnikov sequence {s(t)} of period q −1 is defined as

s(t) =
{

0, if β t = −1

k, if β t ∈ Dk .

Equivalently,

s(t) ≡ logβ(β
t + 1) mod M, 0 ≤ t ≤ q − 2,

with the new convention that logβ 0 = 0. �
In this paper, for an integer M|q − 1, we will consider two

different M-ary Sidelnikov sequences; one of shorter period
q − 1 and the other of longer period qd − 1. To distinguish
one from the other, we will sometimes use {s1(t)} for those of
period q − 1 and {sd (t)} for those of period qd − 1. Then, by
the above definition, an M-ary Sidelnikov sequence {sd(t)} of
longer period can be represented as

sd (t) ≡ logα(α
t + 1) mod M, 0 ≤ t ≤ qd − 2.

Note that any divisor M of q − 1 is also a divisor of qd − 1.
Sometimes, we use simply {s(t)}, but the distinction must be
clear from the context.

C. Correlation

A correlation is a measure of distance between
a sequence and its cyclic shifts or two sequences in
a sequence family. We use the periodic correlation of two
(not necessarily distinct) sequences. Following definition has
been well-known [10].
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Definition 2: Let {a(t)} and {b(t)} be M-ary sequences of
period L, where 0 ≤ t ≤ L−1. A periodic correlation between
these two sequences is defined by, for 0 ≤ τ ≤ L − 1,

Ca,b(τ ) =
L−1∑

t=0

ω
a(t)−b(t+τ )
M ,

where ωM = exp( j 2π
M ) and t + τ is computed modulo L. For

a sequence family S, Cmax(S) is defined to be the maximum
magnitude of all the nontrivial correlations of the pairs of
sequences in S. �

Note that when {a(t)} = {b(t + δ)} for some fixed δ, the
correlation Ca,a(τ ) is called the autocorrelation. It is called
the crosscorrelation when they are cyclically distinct.

D. Weil Bound

Weil bound (see [28, Th. 5.41]) gives an upper bound on the
magnitutde of the multiplicative character sums, and has been
used to calculate some upper bounds on the crosscorrelation
of various sequences [10]. Yu and Gong [43], [44] introduced
some refined versions of the one by Wan [40] with an
additional assumption that ψ(0) = 1. Here we state the version
essentially the same as those in [44].

Theorem 1 [44]: Let f1(x), . . . , fm(x) be distinct monic
irreducible polynomials over G F(q) with degrees d1, . . . , dm,
with e j the number of distinct roots in G F(q) of f j (x)
( j = 1, . . . ,m). Let ψ1, . . . , ψm be nontrivial multiplicative
characters of G F(q), with ψ j (0) = 1 ( j = 1, . . . ,m). Then,
for a1, . . . , am ∈ G F(q)∗, we have the estimate

∣∣∣∣∣∣

∑

x∈G F(q)

ψ1(a1 f1(x)) · · ·ψm(am fm(x))

∣∣∣∣∣∣

≤
⎛

⎝
m∑

j=1

d j − 1

⎞

⎠√
q +

m∑

j=1

e j . (1)

Furthermore, if
∏m

i=1 ψ
di
i (x) = 1 for all x ∈ G F(q)∗ in

addition, then
∣∣∣∣∣∣

∑

x∈G F(q)

ψ1(a1 f1(x)) · · ·ψm(am fm(x))

∣∣∣∣∣∣

≤
⎛

⎝
m∑

j=1

d j − 2

⎞

⎠ √
q + 1 +

m∑

j=1

e j . (2)

E. Cyclotomic Cosets Mod qd − 1 and Mod (qd − 1)/(q − 1)

In order to designate column sequences in the
(q − 1) × ( qd−1

q−1 ) array of a Sidelnikov sequence {sd(t)}
of period qd − 1, we will use column indices from 0 to
(qd − 1)/(q − 1) − 1. These numbers have close relation
with the integers mod (qd − 1)/(q − 1). Furthermore, we will
prove in Section III that l-th column sequence is cyclically
equivalent to lq-th column sequence where lq is computed
mod (qd − 1)/(q − 1). This implies that we have to classify
the column indices from 0 to (qd − 1)/(q − 1) − 1 into
q-cyclotomic cosets mod (qd − 1)/(q − 1).

We observe that gcd(q, qd − 1) = 1 = gcd(q, (qd − 1)/
(q − 1)) for the following definition:

Definition 3: 1) A q-cyclotomic coset Cl containing l
mod qd − 1 is the set of all the integers l, lq, lq2, . . .,
mod qd − 1. If we denote by dl the size of Cl , then

Cl = {l, lq, . . . , lqdl−1}.
2) A q-cyclotomic coset Ĉl containing l mod qd−1

q−1 is the set

of all the integers l, lq, lq2, . . ., mod qd−1
q−1 . If we denote

by ml the size of Ĉl , then

Ĉl = {l, lq, . . . , lqml−1}. (3)

3) We denote by 
 the set of the smallest representatives of
all the q-cyclotomic cosets Ĉl ’s mod (qd − 1)/(q − 1)
except for l = 0. We denote by 
S the subset of 
 such
that l ∈ 
S if and only if ml = dl. We denote by 
′ the
subset of 
 such that l ∈ 
′ if and only if ml = d. �

For any 1 ≤ l < qd − 1, since dl is the smallest
positive integer such that l ≡ lqdl mod qd − 1, we have
that dl |d . [28], [30]. For any 1 ≤ l < (qd−1)/(q−1) similarly,
since ml is the smallest positive integer such that l ≡ lqml

mod (qd − 1)/(q − 1), we have that ml |d . Furthermore, since
l ≡ lqdl (mod qd −1) implies l ≡ lqdl mod (qd −1)/(q−1),
from the definition of ml , we see that ml |dl . Therefore, we
must have ml |dl |d for any 1 ≤ l < (qd − 1)/(q − 1). This
proves the following:

Lemma 1: With the definition above, for any prime power q
and a positive integer d, we have


′ ⊆ 
S ⊆ 
, (4)

where we note that
(a) 
′ = 
S if and only if ml = d is true for 1 ≤ l <

(qd − 1)/(q − 1) with ml = dl,
(b) 
S = 
 if and only if ml = dl for all 1 ≤ l <

(qd − 1)/(q − 1) and
(c) 
′ = 
 if and only if 
′ = 
S = 
 if and only if

ml = d for all 1 ≤ l < (qd − 1)/(q − 1).
When γ is a primitive element of G F(qd), the coset C1
mod qd − 1 contains j if and only if γ j is a q-conjugate
element of γ in G F(qd), and hence, the monic polynomial∏

j∈C1
(x − γ j ) is the minimal polynomial over G F(q) of γ.

It is well-known [28], [30] that d1 = m1 = d .
Example 1: Following four difference cases are worked out

for examples.

Case-1 
′ = 
S = 
: Let q = 5 and d = 3. The integers
mod 124/4 = 31 is partitioned into only 1 coset
{0} of size 1 and 10 cosets of size 3. The result is
shown in CASE 1 of Table I. Note that d = 3 is
a prime and that gcd(q − 1, d) = 1 in this case.
Except for l = 0, we have ml = dl = d for all l in
this case.

Case-2 
′ = 
S 
= 
: Let q = 7 and d = 2. The
integers mod 48/6 = 8 is partitioned into 5 cosets
of size 2 and 1 as shown in CASE 2 of Table I.
Therefore, 
′ = 
S = {1, 2, 3} � 
 = {1, 2, 3, 4}.
Except for l = 0 and those l with ml = d, we have
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TABLE I

FOUR CASES OF EXAMPLE 1

ml < dl for all other l in this case. Note also that
d = 2 is a prime but gcd(q − 1, d) 
= 1.

Case-3 
′ 
= 
S = 
: Let q = 8 and d = 4 so that
qd − 1 = 4095 and (qd − 1)/(q − 1) = 585. The
integers mod 585 is partitioned into 149 cosets of
size 4, 2 and 1 as shown in CASE 3 of Table I.
Therefore, we have |
′| = 144, and |
S| =
|
| = 148. Note that gcd(q−1, d) = 1 in this case.
Except for l = 0 and those l with ml = d, we have
ml = dl < d for all other l in this case. Note also
that d = 4 is not a prime but gcd(q − 1, d) = 1.

Case-4 
′ 
= 
S 
= 
: Let q = 5 and d = 4 so that
qd − 1 = 624 and (qd − 1)/(q − 1) = 156.
The integers mod 156 is partitioned into 44 cosets
of size 4, 2, and 1 as shown in CASE 4 of
Table I. Therefore, we have |
′| = 36, |
S | =
36 + 3 = 39, and |
| = 43. In this case,
neither d is prime nor gcd(q − 1, d) = 1
is true. �

We now prove that the comment at the end of each case of
the above example describes a sufficient condition.

Lemma 2: Assume all the same notations so far.

1) 
′ = 
S if d is a prime.
2) 
S = 
 if gcd(q − 1, d) = 1.

Proof:

1) Note that 
′ = 
S if and only if ml = d is true for
1 ≤ l < (qd − 1)/(q − 1) with ml = dl if and only
if ml = d is true for 1 ≤ l < (qd − 1)/(q − 1) with
lqml ≡ l mod qd − 1. Assume lqml ≡ l mod qd − 1 for
some 1 ≤ l < (qd −1)/(q −1). Then, (qd −1)|l(qml −1),
or (qd −1)/(qml −1)|l since ml |d . Note here that ml = 1
implies (qd − 1)/(q − 1)|l which is impossible. Thus
ml > 1. Now, if d is prime, ml > 1 and ml |d , then
ml = d .

2) See Remark 3.

III. MAIN RESULT

We will first give a representation of a Sidelnikov sequence
of period qd−1 in terms of log to the base β ∈ G F(q). We will
then discuss some properties of the column sequences in the
(q −1)×

(
qd−1
q−1

)
array of these sequences in the subsection A.

Main constructions of the sequence family will follow in the
subsections B and C. We count the family size asymptotically
in general (Appendix) and exactly for some simple cases in
the subsection D.

A. Properties of Column Sequences of the Array of
Sidelnikov Sequences of Period qd − 1

Theorem 2: Let {s(t)} be an M-ary Sidenikov sequence of
period qd − 1, with M|q − 1. Then, for 0 ≤ t ≤ qd − 2,

s(t) ≡ logβ(N(α
t + 1)) mod M. (5)

Proof: By definition, s(t) ≡ y(t) mod M for all t , where

y(t) = logα(α
t + 1).

When αt + 1 = 0, we have logβ(N(0)) = logβ 0 = 0 and
this agrees with the definition of s(t). Now, we may assume
that αt + 1 
= 0 and hence N(αt + 1) 
= 0. Then, with
N(αt + 1) = βx(t),

qd − 1

q − 1
y(t) ≡ logα(α

t + 1)
qd −1
q−1

≡ logα N(αt + 1)

≡ logα α
qd −1
q−1 x(t)

≡ qd − 1

q − 1
x(t) mod qd − 1.

This implies that

x(t) ≡ y(t) mod q − 1,
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and hence that, as M|q − 1,

x(t) ≡ y(t) mod M.

Therefore,

s(t) ≡ y(t) ≡ x(t) ≡ logβ N(αt + 1) mod M.

We write a Sidelnikov sequence {s(t)} of period qd − 1
as an array of size (q − 1) × qd−1

q−1 and denote by {vl(t)} its
l-th column sequence for each 0 ≤ l < (qd −1)/(q −1). Then,
the l-th column sequence {vl(t)} is given by, for 0 ≤ t < q−1,

vl(t) = s

(
qd − 1

q − 1
t + l

)
≡ logβ N(αlβ t + 1) mod M. (6)

We now summarize some properties of the column sequences
{vl(t)} of length q −1 for 0 ≤ l < (qd −1)/(q −1) as follows:

Theorem 3: Let {s(t)} be a Sidelnikov sequence of period
qd − 1 given by (5) and its column sequences {vl(t)} for
0 ≤ l < (qd − 1)/(q − 1) are given by (6).

1) The very first column sequence {v0(t)} is a d-multiple of
the Sidelnikov sequence {s1(t)} of period q −1 defined by
the primitive element β = α(q

d−1)/(q−1) of G F(q). That
is, for all t ,

v0(t) ≡ d logβ(β
t + 1) mod M. (7)

2) For any 1 ≤ l < (qd − 1)/(q − 1), {vlq (t)} is a cyclic
shift of {vl(t)}, where the subscript lq is computed mod
(qd − 1)/(q − 1). In particular, vl (t) = vlq (t + τ ) for
all t , where τ is the quotient when lq is divided by
(qd − 1)/(q − 1).

3) Denote by δ the quotient when lqml is divided by
(qd − 1)/(q − 1). For any 1 ≤ l < (qd − 1)/(q − 1),
the column sequence {vl(t)} has a subperiod less than
q − 1 if and only if q − 1 does not divide δ if and only
if ml < dl. Write δ = (q − 1)a + r where 0 ≤ r < q − 1.
If r 
= 0 then the subperiod of {vl(t)} is given by
gcd(r, q − 1) = gcd(δ, q − 1).
Proof:

1) Observe that

v0(t) = s

(
qd − 1

q − 1
t

)

≡ logβ N(β t + 1)

≡ logβ(β
t + 1)

qd−1
q−1

≡ qd − 1

q − 1
logβ(β

t + 1)

≡ d logβ(β
t + 1) mod M,

where the last congruence holds since (qd − 1)/
(q − 1) ≡ d mod M .

2) Since lq in vlq (t) is computed mod qd−1
q−1 but the expo-

nent l of α in the RHS of (6) is computed mod qd − 1,
the term lq here should be carefully treated. For this, we
divide lq by qd−1

q−1 and put

lq = qd − 1

q − 1
τ + μ,

where 0 ≤ μ < qd−1
q−1 . Then lq ≡ μ (mod qd−1

q−1 ) and

τ = lq−μ
(qd−1)/(q−1)

, and the following comes easily:

vlq (t) ≡ vμ(t) ≡ logβ N(αμβ t + 1)

≡ logβ N(αlq−( qd −1
q−1 )τβ t + 1)

≡ logβ N(αlqβ t−τ + 1)

≡ logβ N((αlqβ t−τ + 1)q
d−1
)

≡ logβ N(αlβ t−τ + 1)

≡ vl(t − τ ) mod M.

In other words, we have vl (t) = vlq (t + τ ) for all t .

3) Since lqml ≡ l mod qd−1
q−1 we write

lqml = qd − 1

q − 1
δ + l, (8)

where 1 ≤ l < qd−1
q−1 . Then

δ = l
qml − 1

(qd − 1)/(q − 1)

= l
(q − 1)(qml−1 + qml−2 + · · · + 1)

(qd − 1)/(q − 1)
. (9)

Using the same argument as in the proof of the previous
item, we see that vl (t) = vlqml (t + δ) for all t . However,
it is also true that vlqml (t) = vl(t) and hence that

vl (t) = vl(t + δ) for all t . (10)

Write δ = (q −1)a +r for some 0 ≤ r < q −1. If r 
= 0,
then {vl(t)} must have a subperiod gcd(r, q −1) which is
strictly less than q − 1. If r = 0, then from (8) we have

lqml ≡ l mod (qd − 1),

which implies dl |ml , and hence ml = dl . It is easy to see
that we must have r = 0 if ml = dl . Therefore, r 
= 0 if
and only if ml < dl .

Finally, assume that {vl(t)} has a subperiod k where
1 ≤ k < q − 1 and k|q − 1. Since {vl(t)} satisfies
(10) where δ is given by (8) or (9), it has the subperiod
gcd(δ, q − 1) = k. We write again δ = (q − 1)a + r
for some 0 ≤ r < q − 1. Now, if r = 0 then
k = gcd(δ, q − 1) = q − 1 is a desired contradiction.
Therefore, we have proved that {vl(t)} has a subperiod
less than q −1 if and only if q −1 does not divide δ given
in (9).

Two important corollaries of the third item of the above
theorem are the following:

Corollary 1: Assume all the same notations as
in Theorem 3.

1) If gcd(d, q−1) = 1, then, for all 1 ≤ l < (qd−1)/(q−1),
the l-th column sequence {vl(t)} has no subperiod less
than q − 1. Note that this is true regardless of whether
ml = dl = d or ml = dl < d.

2) If ml = d for 1 ≤ l < (qd − 1)/(q − 1), then
the l-th column sequence {vl(t)} has no subperiod less
than q − 1. Note that this is true regardless of whether
gcd(d, q − 1) = 1 or not.
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Fig. 1. Array structure of the sidelnikov sequence in Example 2.

Proof:
1) Assume that gcd(d, q − 1) = 1. From the second item

of Lemma 2 we have ml = dl for all 1 ≤ l < (qd − 1)/
(q−1). Therefore, {vl(t)} has no subperiod less than q−1
by the third item of Theorem 3.

2) We observe that ml = d implies ml = dl = d and we are
done by the third item of Theorem 3.

Example 2: Let q = 5 and d = 3. Consider G F(53)
constructed by the primitive element α defined by α3 = 2α+3
over G F(5). Then, β = α31 = 3 is a primitive element
of G F(5). A 4-ary Sidelnikov sequence of period 53−1 = 124
can be put into an array of size 4×31 as given in Fig. 1. Here,

′ = 
S = 
 = {1, 2, 3, 4, 6, 8, 11, 12, 16, 17}, and the
5-cyclotomic cosets mod qd−1

q−1 = 31 are {0} and 10 cosets
of size all 3.

If we let {s1(t)} be the 4-ary Sidelnikov sequence of period 4
using β = 3, then {s1(t)} has the value 3, 2, 0, 1 for
t = 0, 1, 2, 3, and observe that v0(t) ≡ 3s1(t) mod 4 for
all t .

Since Ĉ1 = {1, 5, 25}, we have v1(t) = v5(t) = v25(t).
Similarly, we have v2(t) = v10(t) = v19(t + 1), etc. Observe
that gcd(d, q − 1) = gcd(3, 4) = 1 as well as ml = d = 3 for
all l 
= 0, and hence every {vl(t)}, for l = 1, 2, . . . , 30, does
not have subperiod less than q − 1 = 4. �

Example 3: Assume that q = 7 and d = 4 so that
gcd(d, q − 1) = (4, 6) = 2. We consider two types of
q-cyclotomic cosets mod (qd − 1)/(q − 1) = 400 of size
2 < d. When l = 25, we have ˆC25 = {25, 175} and
C25 = {25, 175, 1225, 1375}, and hence ml = 2 < dl = 4.
Therefore, {v25(t)} has a subperiod 3. When l = 50, we have
ˆC50 = {50, 350} = C50, and hence ml = dl = 2. Therefore,

{v50(t)} has no subperiod. Note that for any l with ml = 4 (and
hence ml = dl), the column sequence {vl(t)} has no subperiod.
We further verify the following: 25 · 72 = 1225 = 400 · 3 + 25
and δ = 3 which is not a multiple of 6. On the other hand,
50 · 72 = 2450 = 400 · 6 + 50 and δ = 6 which is a multiple
of 6. �

The l-th column sequence vl(t) given in (6) can be written
as follows:

vl(t) ≡ logβ fl (β
t ) mod M,

where, for each l,

fl(x)
�= N(αl x + 1)

= βl N(x + α−l )

= βl(x + α−l)(x + α−lq ) · · · (x + α−lqd−1
)

= βl pl(x)
d/dl , (11)

where pl(x) is the minimal polynomial over G F(q) of −α−l

of degree dl . Note here that dl |d and dl is the smallest positive
integer such that qdl l ≡ l mod qd − 1. From (6) and (11),
we have

vl(t) ≡ logβ fl (β
t )

≡ logβ β
l pl(β

t )d/dl mod M (12)

≡ logβ(β
l̂ pl(β

t ))d/dl mod M, for some l̂,

≡ d

dl
logβ(β

l̂ pl(β
t )) mod M, (13)

which is possible because of the following:
Lemma 3: Let β, d, dl and l be as given in (12). Then, there

exists an integer l̂ such that βl = β l̂d/dl .
Proof: The statement is equivalent to the following: there

exists an l̂ such that l ≡ l̂d/dl mod q − 1, or the linear
congruence equation d

dl
x ≡ l mod q − 1 has a solution x ,

or gcd( d
dl
, q − 1) divides l. For this, observe first that lqdl ≡ l

mod qd − 1 implies qd − 1 divides l(qdl − 1) and hence

qd − 1

qdl − 1
|l, (14)

since dl |d .
We note that, since (qd − 1)/(q − 1) ≡ d mod q − 1,

gcd(q − 1,
qd − 1

q − 1
) = gcd(q − 1, d). (15)

Next, use qdl for q and d
dl

for d in (15) to obtain the
following:

gcd(qdl − 1, (qd − 1)/(qdl − 1))

= gcd(qdl − 1, ((qdl )
d
dl − 1)/(qdl − 1))

= gcd(qdl − 1,
d

dl
). (16)

Therefore, we are done by the following: gcd(q−1, d
dl
) divides

gcd(qdl −1, d
dl
), which divides gcd(qdl −1, (qd −1)/(qdl −1))

by (16), which divides gcd(qdl −1, l) by (14), which obviously
divides l.

Note that the above lemma is true regardless of whether
gcd(d, q − 1) = 1 or not, and also regardless of whether
ml = d or not. In particular, if ml = d , then ml = dl = d and
l̂ = l works. One final preparation for the main construction
is to observe the following:

Lemma 4: Let l, k be elements in 
 and τ (0 ≤ τ <
q−1) be an integer. Let pl(x) be the minimal polynomials over
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G F(q) of −α−l of degree dl in (11), and similarly for pk(x).
We consider the following monic polynomial:

β−τdk pk(β
τ x)

= (x + α−kβ−τ )(x + α−kqβ−τ ) · · · (x + α−kqdk −1
β−τ ).

If l and k satisfy ml = dl and mk = dk (i.e., l, k ∈ 
S),
then pl(x) and β−τdk pk(β

τ x) are distinct monic irreducible
polynomials over G F(q), unless l = k and τ = 0.

Proof: Assume that they are the same. Then, we have
α−l = α−kqs

β−τ for some s < dk = mk . This implies

l ≡ kqs + τ
qd − 1

q − 1
mod qd − 1. (17)

Therefore, we have l ≡ kqs mod qd−1
q−1 , and this implies that l

and k belong to the same q-coset mod qd−1
q−1 . Therefore, l = k,

and we have

l ≡ lqs mod
qd − 1

q − 1
.

By the definition of ml , the above implies ml |s, which in turn
implies that s = 0 since s < dk = mk = ml . Then, (17)
becomes τ qd−1

q−1 ≡ 0 mod qd −1 which gives q −1|τ and thus
τ = 0 since we have assumed that 0 ≤ τ < q − 1.

We note that the same conclusion of the above lemma is
true when l, k ∈ 
′ since in this case ml = d = mk implies
ml = dl = d = dk = mk .

B. Main Construction: Column Sequences and
Their Constant Multiples

We will clearly distinguish two M-ary Sidelnikov sequences
from now on: {s(t)} of period q − 1 and {sd(t)} of
period qd − 1. For some reason to be explained later, we have
to put some upper limit on d from now on, which is given by
the following:

3 ≤ d <
1

2
(
√

q − 2√
q

+ 1) (18)

We would like to emphasis again the contrapositive as well
as the inversion of the third item of Theorem 3: for 1 ≤ l <
(qd − 1)/(q − 1), the l-th column sequence {vl(t)} has a full
period q −1 if and only if ml = dl if and only if q −1 divides
δ in (9). This will play a key role in our main construction
of the family. Recall also that 
S is a subset of 
 containing
those l with ml = dl .

Definition 4: Assume that d is in the range given by (18)
and q > 27. We write an M-ary Sidelnikov sequence {sd(t)}
of period qd −1 as a (q−1)× qd−1

q−1 array, where sd (t) is given

in (5) with α and β = α
qd −1
q−1 , and denote by {vl(t)} its l-th

column sequence for each l = 1, 2, . . . , (qd − 1)/(q − 1)− 1.
We denote by {s(t)} the M-ary Sidelnikov sequence of period
q − 1 given by s(t) ≡ logβ(β

t + 1) mod M for 0 ≤ t < q − 1.

1) We now construct a family �′ of M-ary sequences of
period q − 1 using 
′ as follows:

�′ = {cvl(t)| 1 ≤ c < M, l ∈ 
′}. (19)

2) In paricular, for an integer r ≥ 2 dividing gcd(d,M), we
consider the following subset �′

r,c of �′:

�′
r,c =

r−1⋃

i=0

{(
c + i M

r

)
vl(t)

∣∣∣∣ l ∈ 
′
}
, (20)

where c is a fixed integer with 1 ≤ c ≤ M
r − 1. Using

c = M
r in this case, we also construct

�′
M/r =

r−1⋃

i=1

{
i M

r
vl (t)

∣∣∣∣ l ∈ 
′
}
. (21)

3) When gcd(d,M) = 1, using 
S (instead of 
′) we
construct a family �S as follows:

�S = {cvl(t)| 1 ≤ c < M, l ∈ 
S}. (22)
Theorem 4 (Properties of Families in Definition 4):

1) The sequences in the family �′ are cyclically inequiva-
lent, and

Cmax(�
′) ≤ (2d − 1)

√
q + 1.

2) All the members of �′
r,c for 1 ≤ c ≤ M

r −1 are cyclically
distinct and

Cmax(�
′
r,c) ≤ (2d − 2)

√
q + 2.

The same is true for the family �′
r,M/r using c = M/r .

3) All the members of �S are cyclically distinct, and

Cmax(�S) ≤ (2d − 1)
√

q + 1.
Proof:

1) Assume that l 
= k and τ is in the range 0 ≤ τ < q − 1.
We recall that hence ml = dl = d = mk = dk . Let
1 ≤ c1, c2 < M be any two arbitrary constants. The
crosscorrelation function between the sequences {c1vl (t)}
and {c2vk(t)} in �′ is given by

Cc1vl ,c2vk (τ ) =
q−2∑

t=0

ω
c1vl (t)−c2vk(t+τ )
M . (23)

Here, from (12),

ω
c1vl (t)
M = ω

c1 logβ β
l pl (β

t )

M = ψc1(βl pl(β
t ))

and similarly,

ω
−c2vk(t+τ )
M = ψM−c2 (βk pk(β

t+τ )).

Therefore, (23) becomes

Cc1vl ,c2vk (τ )

=
q−2∑

t=0

ψc1(βl pl(β
t ))ψM−c2(βk+τdβ−τd pk(β

τβ t ))

=
∑

x∈G F(q)∗
ψ1(β

l pl(x))ψ2(β
k+τdβ−τd pk(β

τ x)),

(24)

where ψ1 = ψc1 and ψ2 = ψM−c2 are both non-trivial
since both exponents c1 and M − c2 belong to the range
from 1 to M − 1. Furthermore, Lemma 4 proves that
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pl(x) and β−τd pk(β
τ x) are distinct monic irreducible

polynomials over G F(q) unless l = k and τ = 0.
Now, assume that l 
= k or 1 ≤ τ < q − 2 and apply

the Weil bound (1) in Theorem 1 with e1 = e2 = 0:

|Cc1vl ,c2vk (τ )|

=
∣∣∣∣∣∣

∑

x∈G F(q)∗
ψ1(β

l pl(x))ψ2(β
k+τd−τd pk(β

τ x))

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

x∈G F(q)

ψ1(β
l pl(x))ψ2(β

k+τd−τd pk(β
τ x))

∣∣∣∣∣∣
+1 (25)

≤ (2d − 1)
√

q + 1. (26)

Consider now the case that c1 
= c2, but l = k and τ = 0.
Then

Cc1vl ,c2vl (τ = 0) =
∑

x∈G F(q)∗
ψ3(β

l pl(x)),

where ψ3 = ψc1−c2 is nontrivial, since 1 ≤
|c1 − c2| ≤ M − 1. So, by the Weil bound (1) again,

|Cc1vl ,c2vl (τ = 0)| ≤ (d − 1)
√

q + 1.

This completes the proof of the correlation upper bound
on the family �′.

To show that the members in �′ are all cyclically
distinct, we proceed as follows. If c1vl (t) and c2vk(t)
for (c1, l) 
= (c2, k) are cyclically equivalent, then, for
some τ (0 ≤ τ ≤ q − 2), c1vl(t) = c2vk(t + τ ) for all t .
Then we have

q − 1 =
q−2∑

t=0

ω
c1vl (t)−c2vk(t+τ )
M

= ∣∣Cc1v1,c2v2(τ )
∣∣ ≤ (2d − 1)

√
q + 1, (27)

which is impossible because of the assumption
d < 1

2 (
√

q − 2√
q + 1).

2) Since �′
r,c is a subset of �′, it is obvious that its

members are cyclically distinct by the above proof. For
the correlation bound, we use the same process as in
the above until the expression for |Cc1vl ,c2vk (τ )| in (25),
where c1 = c + i M/r and c2 = c + j M/r for some
0 ≤ i, j ≤ r − 1 and 1 ≤ c ≤ M/r − 1.
Now, since c1 ≡ c2 mod M/r and r | gcd(d,M), we have
M|d(c1 − c2). Therefore, since ml = dl = d = d1 and
mk = dk = d = d2, we have

2∏

i=1

ψ
di
i (x) = ψd(c1−c2)(x) = 1

for all x ∈ G F(q)∗. Therefore, we apply the Weil Bound
in (2), and obtain the improved upper bound as

|Cc1vl ,c2vk (τ )|

≤
∣∣∣∣∣∣

∑

x∈G F(q)

ψ1(β
l pl(x))ψ2(β

k+τdβ−τd pk(β
τ x))

∣∣∣∣∣∣
+ 1

≤ (2d − 2)
√

q + 2.

Note that for �′
M/r , we have c1 = i M/r and c2 = j M/r

for some 0 ≤ i, j ≤ r −1. Therefore, the improved upper
bound also applies.

3) Basically, the proof is almost the same as the above
item 1), except for the steps from (23) to (24). New
expression for (24) here would be

Cc1vl ,c2vk (τ ) =
∑

x∈G F(q)∗

[
ψcd/dl (β l̂ pl(x))

·ψ(M−c2)d/dk (β k̂+τdkβ−τdk pk(β
τ x))

]
,

for some l̂ and k̂ by Lemma 3. In this case, since
1 ≤ c1, c2 < M , ψcd/dl and ψ(M−c2)d/dk are non-trivial
because of the condition gcd(d,M) = 1, the remaining
steps in the proof of 1) work.

Remark 1: When d is prime, Lemma 2 implies 
′ = 
S.
Therefore, we have �′ = �S regardless of gcd(d,M) = 1
or not. When d is not prime, �S will possibly be slightly
larger in size than �′, and the difference is almost trivial.
See Example 6 at the end of Subsection III-D. �′

r,c or �′
M/r

can be constructed when gcd(d,M) > 1 and it must be
definitely smaller in size than �′ but it has tighter bound on
its maximum correlation magnitudes. Analysis on the sizes of
various families will be given in Subsection III-D. �

C. Main Construction: Combining With Previously
Constructed Families

We follow [44] and now construct various families by
combining those in Definition 4 and the families IS in [21]
and AS in [23] and [14], where

IS = {cs(t)| 1 ≤ c < M} (28)

AS = {c0s(t)+ c1s(t + δ)| 1 ≤ δ ≤ �(q − 1)/2
}, (29)

where 1 ≤ c0, c1 < M for 1 ≤ δ ≤ �(q − 1)/2
, and c0 < c1
if δ = q−1

2 for odd prime power q . It has already been proved
that the members of IS ∪ AS are cyclically distinct and

Cmax(IS ∪ AS) ≤ 3
√

q + 5 (30)

as [23, Th. 4] (which is mentioned in [44, Proof of Th. 9]).
We will also use the following subset AS0 of AS :

AS0 = {c0s(t)+ c1s(t + δ)| 1 ≤ δ ≤ �(q − 1)/2
}, (31)

where c0 + c1 ≡ 0 mod M . It has also been proved that the
members of IS ∪ AS0 are cyclically distinct and

Cmax(IS ∪ AS0) ≤ 2
√

q + 6 (32)

as [14, Th. 18] (which is also mentioned in [44, Proof
of Th. 9]).

In the following, we note that the definition of the family IS ,
AS or AS0 has nothing to do with the value of d .

Definition 5: Assume all the same notation as in
Definition 4, and IS and AS in (28) and (29), respectively.

1) Using �′, we construct a family �′ext of M-ary
sequences of period q − 1 as

�′ext = �′ ∪ IS ∪ AS . (33)
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2) Using �′
M/r for r ≥ 2 when r | gcd(d,M), we construct

a family �′ext
M/r of M-ary sequences of period q − 1 as

�′ext
M/r = �′

M/r ∪ IS ∪ AS0. (34)

3) Using �S when gcd(d,M) = 1, we construct a family
�ext

S of M-ary sequences of period q − 1 as

�ext
S = �S ∪ IS ∪ AS . (35)

Theorem 5 (Properties of Extended Families in
Definition 5): Assume all the notation and assumptions
in Definition 5.

1) The sequences in the family �′ext are cyclically distinct,
and

Cmax (�
′ext ) ≤ (2d − 1)

√
q + 1.

2) The sequences in the family �′ext
M/r are cyclically distinct,

and

Cmax(�
′ext
M/r ) ≤ (2d − 2)

√
q + 2.

3) The sequences in the family �ext
S are cyclically distinct,

and

Cmax(�
ext
S ) ≤ (2d − 1)

√
q + 1.

Proof:

1) We have already proved that

Cmax(�
′) ≤ (2d − 1)

√
q + 1

in Theorem 4 above. Recall (30) for Cmax(IS ∪ AS).
Therefore, we only have to prove the correlation bound
of {a(t)} and {b(t)} where {a(t)} ∈ IS, {b(t)} ∈ �′
and {a(t)} ∈ AS, {b(t)} ∈ �′ for the upper bound on
Cmax(�

′ext ).
Case 1 {a(t)} ∈ IS, {b(t)} ∈ �′: Let a(t) = c1s(t),

b(t) = c2vl(t). Then the correlation between {a(t)} and
{b(t)} is

Ca,b(τ ) =
q−2∑

t=0

ω
c1s(t+τ )−c2vl (t)
M

=
q−2∑

t=0

ω
c1 logβ (β

t+τ+1)−c2 logβ fl (β t )

M

=
∑

x∈G F(q)∗
ω

c1 logβ (β
τ x+1)−c2 logβ β

l pl (x)
M ,

where fl (x) = βl pl(x) for the irreducible polynomial
pl(x) since ml = dl = d . Then, we can express the
above correlation as a character sum and apply the Weil
bound (1). Therefore,

|Ca,b(τ )|

=
∣∣∣∣∣∣

∑

x∈G F(q)

ψc1(βτ x + 1)ψM−c2 (βl pl(x))− 1

∣∣∣∣∣∣
≤ (dl + 1 − 1)

√
q + 2

≤ d
√

q + 2.

Case 2 {a(t)} ∈ AS, {b(t)} ∈ �′: Let a(t) =
c0s(t)+ c1s(t + δ), b(t) = c2vl(t). Then the correlation
between {a(t)} and {b(t)} is

Ca,b(τ )

=
q−2∑

t=0

ω
c0s(t+τ )+c1s(t+δ+τ )−c2vl (t)
M

=
∑

x∈G F(q)∗
ω

c0 logβ(β
τ x+1)+c1 logβ(β

τ+δx+1)−c2 logβ β
l pl (x)

M ,

and we can also apply the same method as Case 1. Hence,

Ca,b(τ ) ≤ (d + 1)
√

q + 3.

Cyclic inequivalence of members of �′ has been proved
in Theorem 4. Those for IS or AS have been done
earlier by others. We only have to check the cyclic
inequivalence between members of IS and �′, and also
those in AS and �′. These can be done easily by some
similar methods used in the proof of Theorem 4.

2) We have already proved that

Cmax(�
′
M/r ) ≤ (2d − 2)

√
q + 2

in Theorem 4 above. Recall (32) for Cmax(IS ∪ AS0).
Therefore, we only have to prove the correlation bound
of {a(t)} and {b(t)} where {a(t)} ∈ IS, {b(t)} ∈ �′

M/r
and {a(t)} ∈ AS0, {b(t)} ∈ �′

M/r for the upper bound on
Cmax(�

′ext
M/r ). Since �′

M/r is a subset of �′ and AS0 is a
subset of AS , the same steps as in the proof of 1) apply
and we have

|Ca,b(τ )| ≤ d
√

q + 2

for Case 1 and

|Ca,b(τ )| ≤ d
√

q + 4

for Case 2. Cyclic inequivalence of members of �′ext
M/r

can be proved similarly.
3) This can be done similarly.

D. Counting the Size of the Proposed Families

We recall that we consider the value of d in the range
given by (18) and hence q > 27. Also, 
′ is the set of
representatives of the q-cyclotomic cosets mod (qd−1)/(q−1)
of l with ml = d , and 
S is the set of representatives of the
q-cyclotomic cosets mod (qd − 1)/(q − 1) of l with ml = dl .
From Definition 4, we see that

|�′| = (M − 1)|
′|
|�′

r,c| = r |
′|
|�′

M/r | = (r − 1)|
′|
|�S | = (M − 1)|
S|,

where r | gcd(d,M) and r ≥ 2.
Recall that � = 1 when q is odd and � = 2 when q is

even. For the families IS , AS and AS0, it is easy to see that

|IS | = M − 1,

|AS | = (M − 1)

(
(M − 1)(q − 2)+�− 2

2

)
,
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and

|AS0| =
{

1
2 ((M − 1)(q − 2)− 1), q odd and M even
1
2 (M − 1)(q − 2), otherwise.

Therefore, we have the following:

|�′ext | = (M − 1)|
′| + 1

2
((M − 1)2(q − 2)+�)

|�ext
S | = (M − 1)|
S| + 1

2
((M − 1)2(q − 2)+�)

|�′ext
M/r | = (M − 1)+ (r − 1)|
′| + |AS0|

Asymptotic counting in the appendix gives |
| ∼ |
S| ∼
|
′| ∼ qd−1/d as q increases for d > 3. (Cor. 2 in Appendix)
This proves the following:

Theorem 6: For d > 3 and as q → ∞, we have

|�′ext | ∼ |�ext
S | ∼ (M − 1)qd−1/d,

and

|�′ext
M/r | ∼ (r − 1)qd−1/d.

We do not have explicit expressions for |
| or |
′| or |
S|
in general, except for some special values of d . In this sub-
section, we give an exact counting of |
| and |
′| (and hence
the size of the family �′ext ) when d is a prime power or d is a
product of two distinct primes. These will cover, in particular,
the values of d from 2 to 11 and we believe this would
be practically enough for selecting the right value of d for
any given q and M , We will use the same notation as all
the previous subsections. We would like to recall that, from
Lemmas 1 and 2, |
′| = |
S| if d is prime and |
S | = |
|
if gcd(q − 1, d) = 1.

Theorem 7: When d is a prime, we have

|
| = |
′| + k − 1 = 1

d

(
qd − 1

q − 1
− k

)
+ k − 1,

where k = gcd(q − 1, d) is either 1 or d. Therefore, with
� = 1 when q is odd and � = 2 when q is even, we have

|�′ext | = (M − 1)

(
1

d

(
qd −1

q−1
−k

)
+ (M−1)(L−1)+�

2

)
.

Proof: Note that every coset Ĉs in this case has size
either 1 or d . Observe that s in the integers mod qd−1

q−1 belongs

to a singleton coset Ĉs = {s} if and only if sq ≡ s mod qd−1
q−1 .

Now,

sq ≡ s mod
qd − 1

q − 1
⇐⇒ s(q − 1) ≡ 0 mod

qd − 1

q − 1

⇐⇒ s ≡ 0 mod
qd − 1

q − 1
/k,

where k = gcd(q − 1, d).
Therefore, s belongs to a singleton coset if and only if

it is of the form i qd−1
q−1 /k for 0 ≤ i < k. Hence, the

number of singleton cosets is k including the coset {0}. All
the other cosets have size d , and the number of such cosets is
1
d (

qd−1
q−1 − k). Since 0 
∈ 
, we have the desired result.

Example 4: When d = 3, we have |
| = |
′| + k − 1 =
q2+q+1−k

3 + k − 1, where k = gcd(q − 1, 3) is either 1
or 3. �

Theorem 8: Let d = ra for a prime r and a positive
integer a. Then,

|
| =
a−1∑

i=1

gcd(qri − 1, qd−1
q−1 )− gcd(qri−1 − 1, qd−1

q−1 )

r i

+ gcd(d, q − 1)− 1 + |
′|,
and

|
′| = 1

d

(
qd − 1

q − 1
− gcd

(
qd/r − 1,

qd − 1

q − 1

))
.

Therefore, with � = 1 when q is odd and � = 2 when q is
even, we have

|�′ext | = (M − 1)

(
1

d

(
qd − 1

q − 1
− gcd

(
qd/r − 1,

qd − 1

q − 1

))

+ (M − 1)(L − 1)+�

2

)
.

Proof: Note that in this case the coset size is r i for some
0 ≤ i ≤ k. We may similarly count the number of singleton
cosets, which is given by gcd(d, q − 1). Now, we count the
number of cosets of size r i for each 1 ≤ i ≤ k as follows.

For any s in the integers mod qd−1
q−1 , we have sqd ≡ s mod

qd−1
q−1 . Observe that s belongs to a coset of size r i if and only

if sqri ≡ s but sqri−1 
≡ s mod qd−1
q−1 .

The number of elements s such that sqri ≡ s mod qd−1
q−1

is easily counted to be gcd(qri − 1, qd−1
q−1 ). Of these, the

number of those with sqri−1 ≡ s mod qd−1
q−1 is given

by gcd(qri−1 − 1, qd−1
q−1 ).

Example 5: When d = 4, we have

|
′| = q3 + q2 + q + 1 − j

4
,

where j = gcd(q2 − 1, q3 + q2 + q + 1), and

|
| = |
′| + j − k

2
+ k − 1,

where k = gcd(q − 1, 4). �
Theorem 9: Let d = uv be a product of two distinct

primes u and v. Then we have

|
| = ∣∣
′∣∣ + gcd(q − 1, d)− 1

+ 1

u

(
qu − 1

q − 1
gcd(q − 1, v)− gcd(q − 1, d)

)

+ 1

v

(
qv − 1

q − 1
gcd(q − 1, u)− gcd(q − 1, d)

)
,

and

d
∣∣
′∣∣ = qd − 1

q − 1
+ gcd(q − 1, d)

− qu − 1

q − 1
gcd(q − 1, v)− qv − 1

q − 1
gcd(q − 1, u).
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Therefore, with � = 1 when q is odd and � = 2 when q is
even, we have

|�′ext | = M − 1

d

(
qd − 1

q − 1
+ gcd(q − 1, d)

− qu − 1

q − 1
gcd(q − 1, v)

− qv − 1

q − 1
gcd(q − 1, u)

)

+ (M − 1)
(M − 1)(L − 1)+�

2
.

Proof: Note in this case that the size of a coset must be
either 1, u, v, or uv = d . Let T = qd−1

q−1 . We first observe
that, for any s in the integers mod T , s belongs to a coset
of size 1 if and only if sq ≡ s mod T . Therefore, we have
s(q−1) ≡ 0 mod T , or s ≡ 0 mod T

gcd(q−1,T ) . The integer s
which satisfies sq ≡ s mod T has the following form:

s = T

gcd(q − 1, T )
i, 1 ≤ i < gcd(q − 1, T ).

Therefore, the number of cosets of size 1 is given by
gcd(q − 1, T )− 1 = gcd(q − 1, d)− 1. [see (15)].

Similarly, note that s belongs to a coset of size u if and
only if squ ≡ s mod T and sq 
≡ s mod T . Since squ ≡ s
mod T if and only if s ≡ 0 mod T

gcd(qu−1,T ) , the integer s
which satisfies squ ≡ s mod T has the following form:

s = T

gcd(qu − 1, T )
i 1 ≤ i < gcd(qu − 1, T ).

Therefore, the number of cosets of size u is given by the
following:

1

u

(
gcd(qu − 1, T )− gcd(q − 1, d)

)
.

Observe that

T = quv − 1

q − 1

= ((qu − 1 + 1)v − 1)

qu − 1

qu − 1

q − 1

=
(

v∑

i=1

(
v

i

)
(qu − 1)i−1

)
qu − 1

q − 1

=
(
v +

v∑

i=2

(
v

i

)
(qu − 1)i−1

)
qu − 1

q − 1

≡ v
qu − 1

q − 1
mod qu − 1.

Thus,

gcd(T, qu − 1) = gcd

(
v

qu − 1

q − 1
, qu − 1

)

= gcd

(
v

qu − 1

q − 1
, (q − 1)

qu − 1

q − 1

)

= qu − 1

q − 1
gcd(v, q − 1).

Similarly, we have

gcd(T, qv − 1) = qv − 1

q − 1
gcd(u, q − 1).

Therefore, the number of cosets of size u becomes

1

u

(
qu − 1

q − 1
gcd(q − 1, v)− gcd(q − 1, d)

)
,

and that of size v is given by

1

v

(
qv − 1

q − 1
gcd(q − 1, u)− gcd(q − 1, d)

)
.

Therefore, the number |
′| of cosets in 
 of size uv is given
by the following:

|
′| = 1

uv

(
T + gcd(q − 1, d)− qu − 1

q − 1
gcd(q − 1, v)

− qv − 1

q − 1
gcd(q − 1, u)

)
,

and |
| is given as desired.
Remark 2: The size of 
 in Theorems 8 and 9 becomes the

same as that of 
S when gcd(q − 1, d) = 1. We further note
that gcd(d,M) = 1 if gcd(q − 1, d) = 1. �

Example 6: Table II shows the sizes of various families for
q = 64 (M = 7 or 63), q = 97 (M = 2 or 96), and d = 3
or d = 4, and the correlation bounds given in Theorem 5.
Followings are to be noted from this table:

1) Correlation magnitude of the families are from
Theorem 5.

2) The construction for �′ (and hence �′ext ) is applicable
for any q > 27, M|(q − 1) and d satisfying (18).

3) The construction for �S (and hence �ext
S ) will only be

applicable whenever gcd(d,M) = 1. There are four such
cases in this table. The size of �S is the same as that of
�′ if d is a prime (d = 3 in this table), and it is negligibly
a bit larger otherwise.

4) The construction for �′
M/r (and hence �′ext

M/r also)
will be applicable for any r | gcd(d,M) and r ≥ 2.
If gcd(d,M) = 1 then it will not be applicable. The size
of �′ext

M/r is much smaller than that of �′ext , but it has
much tighter bound on the correlation magnitude.

5) This table clearly shows that one can have a trade-off
between the size and the maximum correlation magnitude
for given q and M by carefully selecting the value
of d. �

E. Practical Issues of Constructing 
′ or 
S

For the constructions of �′ext , or its subset �′ext
M/r , or �ext

S ,
one has to first construct 
S or its subset 
′, both of which
are subsets of 
. This could be challenging since basically
one has to take the following steps:

1) Determine 
 by finding all the q-cyclotomic cosets
Ĉl containing l mod (qd − 1)/(q − 1) for 1 ≤ l ≤
(qd − 1)/(q − 1)− 1.

2) Determine 
S and 
′ by finding the values dl and ml

for all l ∈ 
.
It is to be noted that only the first step above will require mem-
ory of size approximately qd−1

d ×
⌈

log2
qd−1
q−1

⌉
bits (Cor. 2),
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TABLE II

THE SIZES AND CORRELATION BOUNDS OF THE PROPOSED FAMILIES FOR q = 64 AND q = 97 WITH d = 3 AND 4 (EXAMPLE 6)

which may be a big issue in engineering sense for large
q = L + 1 and d ≥ 3. Computational time-complexity
may also be a bigger issue. For the first step of the above,
one has to go through all the q-cyclotomic cosets of l mod
(qd − 1)/(q − 1) from l = 1 to l = (qd − 1)/(q − 1) − 1
checking whether it is new or not in order to determine 
.
Basically, this brute force algorithm may require approximate
time-complexity which is at least linear in ((qd −1)/(q −1))2.

However, one can do much better when d is prime and
gcd(q − 1, d) = 1, and furthermore, when (qd − 1)/(q − 1) is
also prime. For d = 3, such cases occur when q = 41, 59, 71,
or 89, etc. Note that, for each of these four values of q and
d = 3, the value (qd − 1)/(q − 1) becomes 1723, 3541, 5113,
or 8011, respectively, all of which are prime. It would be an
interesting problem if one could determine whether there are
infinitely many such cases for each prime d .

Let d be prime and gcd(q − 1, d) = 1. Then 
′ = 
S =

 (Lemma 2), or ml = dl = d for any l ∈ 
. If Q

�=
(qd − 1)/(q − 1) is prime in addition, then |
| = (Q − 1)/d ,
which we prove in the following by construction:

Theorem 10: Let d and Q = (qd −1)/(q−1) both be prime
and gcd(q − 1, d) = 1. Then


′ = 
S = 
 = {si mod Q | 0 ≤ i ≤ (Q − 1)/d − 1},
where s is a primitive root mod Q.

Proof: It is enough to show that

Ĉ1 = {qi |0 ≤ i ≤ d − 1} = {si Q−1
d |0 ≤ i ≤ d − 1} �= T1.

As Q is prime, the multiplicative group of integers mod Q is
a cyclic group of order Q − 1. So, for each positive divisor
e of Q − 1, it has one and only one subgroup of order e.
As both Ĉ1 and T1 are subgroups of order d , they must be the
same.

Note that, in the cases of the above theorem, the require
memory size would be approximately

⌈
log2

qd−1
q−1

⌉
bits since

there is no need to save all distinct cosets, and the
time-complexity reduces to approximately linear in qd−1

d plus
some extra time for finding a primitive root s mod Q. There
are some “good” algorithms [4] for finding a primitive root
modulo a prime.

In all other cases in general, what we could do is to give
some test of determining the values of ml and dl for 1 ≤
l < (qd − 1)/(q − 1) without going through checking the
cosets mod qd − 1.

Theorem 11: Let l be any integer with 1 ≤ l <
(qd − 1)/(q − 1). Then

1) dl is the least positive integer such that dl |d and

qd − 1

qdl − 1

∣∣∣∣ l.
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2) ml is the least positive integer such that ml |d and

qd − 1

(qml − 1) gcd( d
ml
, q − 1)

∣∣∣∣∣ l.

Proof: From the definitions of dl and ml , it is enough to
observe that

lqdl ≡ l mod qd − 1 ⇔ (qd − 1)|l(qdl − 1)

⇔ qd − 1

qdl − 1

∣∣∣∣ l,

and

lqml ≡ l mod (qd − 1)/(q − 1)

⇔ (qd − 1)/(q − 1)|l(qml − 1)

⇔ (qd − 1)/(q − 1)

gcd((qd − 1)/(q − 1), qml − 1)

∣∣∣∣ l.

Observe that

(qd − 1)/(q − 1)

gcd((qd − 1)/(q − 1), qml − 1)

= qd − 1

gcd((qd − 1), (qml − 1)(q − 1))

= qd − 1

(qml − 1) gcd( qd−1
qml −1 , q − 1)

= qd − 1

(qml − 1) gcd( d
ml
, q − 1)

,

where we use the fact that the remainder when qd−1
qml −1 is divided

by q − 1 is d
ml

.
Example 7: Let q = 53 and d = 4. Then, (q4 − 1)/

(q − 1) = 151740 and for 1 ≤ l ≤ 151739, we have

dl =
{

2 if 2810 | l
4 otherwise,

and

ml =
⎧
⎨

⎩

1 if 37935 | l
2 if 1405 | l and 37935 
 | l
4 otherwise.

Remark 3: If gcd(d, q − 1) = 1 then we have
gcd( d

ml
, q − 1) = 1 for any divisor ml of d. Therefore,

two sufficient conditions coincide, and ml = dl for any
such l, and hence, 
S = 
, which is the second item
of Lemma 2. �

IV. CONCLUSION

In this paper, we investigate the (q − 1) × qd−1
q−1 array

structure of M-ary Sidelnikov sequences of period qd − 1,
and propose two constructions �′ext and �ext

S for families of
M-ary sequences of period q − 1 with: (1) the correlation
magnitudes which are upper bounded by (2d − 1)

√
q + 1

for d ≥ 3 and (2) the sizes are given approximately by
(M − 1)qd−1/d . Two constructions of this paper depend on
whether gcd(d,M) = 1 or not. We furthermore give the exact
count of them when d is a prime power or a product of
two distinct primes.

We note that �′ext is applicable for all prime powers q > 27
and 3 ≤ d < 1

2 (
√

q −2/
√

q +1), and so is �ext
S with an extra

condition that gcd(d,M) = 1 with a minor increase in the
family size compared with �′ext .

We are able to find some subset �′ext
M/r of �′ext for

r ≥ 2 and r | gcd(d,M), which has a tighter upper bound
on its correlation magnitude: (2d − 2)

√
q + 2. However its

size is much smaller than that of �′ext .
It is shown by construction that 
′ can be constructed

with reasonable size of memory and time for practical appli-
cations when both d and (qd − 1)/(q − 1) are prime and
gcd(q − 1, d) = 1.

Table III shows some of the well-known non-binary
sequence families, and their period L, alphabet size M , the
upper bound on their correlation magnitude, and the family
size.

APPENDIX

ASYMPTOTIC COUNTING THAT |
| ∼ |
S | ∼ |
′| ∼ qd−1

d

We will use the same notation as before in this appendix.
Proposition 1: The number of monic irreducible factors

of x
qd −1
q−1 − 1 over G F(q) is equal to |
| + 1.

Proof: Let γ = αq−1 be a primitive qd−1
q−1 -th root of unity

in G F(qd). Then, with

M(l)(x) =
∏

j∈Ĉl

(x − γ j )

denoting the minimal polynomial of γ l over G F(q) where Ĉl

is the q-cyclotomic coset mod qd−1
q−1 containing l described

in (3), we have

x
qd −1
q−1 − 1 =

∏

l∈
∪{0}
M(l)(x).

This proves the proposition.
Theorem 12 [45]: For each positive integer f , let

A f = {r : r |q f − 1 but r 
 |qi − 1 for 1 ≤ i < f }.
For r ∈ A f , write r = dr f mr f , with dr f = gcd(r, q f −1

q−1 ).
Assume b ∈ G F(q)∗ has order m, and let N ( f, b, q) denote
the number of monic irreducible polynomials over G F(q) of
degree f with constant term (−1) f b. Then

N ( f, b, q) = 1

f φ(m)

∑

r∈A f
mr f =m

φ(r),

where φ(m) is the Euler totient function and counts the
number of integers from 1 to m which are relatively prime
to m.

Lemma 5: Let p(x) = xe + · · · + (−1)eb be a monic

irreducible factor over G F(q) of x
qd −1
q−1 − 1. Then e|d, and

bd/e = 1.
Proof: Clearly, e|d . For a root γ of p(x) in G F(qd),

N(γ ) = 1, and ((−1)eb)d/e = (−1)dbd/e is the constant term
of p(x)d/e = xd + · · · + (−1)d N(γ ).
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TABLE III

COMPARISON OF WELL KNOWN POLYPHASE SEQUENCE FAMILIES ( p IS AN ODD PRIME)

Theorem 13: The number |
| + 1 of monic irreducible

factors of x
qd −1
q−1 − 1 is given by

∑

e|d

1

e

∑

m| gcd( d
e ,q−1)

∑

r∈Ae
mre=m

φ(r).

Proof: In view of Lemma 5, that number is equal
to

∑

e|d

∑

bd/e=1

λ(b, e) where λ(b, e) is the number of monic

irreducible factors over G F(q) of x
qd −1
q−1 − 1, with degree e

and the constant term equal to (−1)eb. This is equal to
∑

e|d

∑

m| gcd( d
e ,q−1)

∑

b
o(b)=m

λ′(b, e)

where λ′(b, e) is the number of monic irreducible polynomials
over G F(q) with degree e and the constant term equal to
(−1)eb, and o(b) denotes the order of b. Hence,

|
| + 1 =
∑

e|d

∑

m| gcd( d
e ,q−1)

∑

b
o(b)=m

N (e, b, q).

The desired result now follows from Theorem 12.
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The next theorem follows from [40] by taking f (T ) = T.
It gives an estimate for N ( f, b, q).

Theorem 14 [40]: Let N ( f, b, q) denote the number of
monic irreducible polynomials over G F(q) of degree f with
constant term (−1) f b, for some element b ∈ G F(q)∗. Then

∣∣∣∣N ( f, b, q)− q f

f (q − 1)

∣∣∣∣ ≤ 2

f

√
q f .

Corollary 2: Let d > 3. The asymptotic sizes of 
, 
S,
and 
′, as q → ∞, are given by:

|
| ∼ |
S | ∼ |
′| ∼ qd−1

d
.

Proof: Assume that d > 3. From Theorem 14,
∣∣∣∣∣∣
|
| + 1 −

∑

e|d

gcd( d
e , q − 1)qe

e(q − 1)

∣∣∣∣∣∣
≤ 2

∑

e|d

gcd( d
e , q − 1)qe/2

e
.

This implies that

|
| ∼ qd−1

d
as q → ∞.

Observe that |
′| = N (d, 1, q), and hence that
∣∣∣∣|
′| − qd

d(q − 1)

∣∣∣∣ ≤ 2

d
qd/2,

again from Theorem 14. This yields that

|
′| ∼ qd−1

d
as q → ∞.

Finally, as |
′| ≤ |
S | ≤ |
|, we also have

|
S | ∼ qd−1

d
as q → ∞.
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