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Abstract— We show that a p-ary polyphase sequence of
period p2 from the Fermat quotients is perfect. That is, its
periodic autocorrelation is zero for all non-trivial phase shifts.
We call this Fermat-quotient sequence. We propose a collection of
optimal families of perfect polyphase sequences using the Fermat-
quotient sequences in the sense of the Sarwate bound. That is, the
cross correlation of two members in a family is upper bounded
by p. To investigate some relation between Fermat-quotient
sequences and Frank–Zadoff sequences and to construct optimal
families including these sequences, we introduce generators of
p-ary polyphase sequences of period p2 using their p × p array
structures. We call an optimal generator to be the generator of
some p-ary polyphase sequences which are perfect and which
gives an optimal family by the proposed construction. Finally,
we propose an algebraic construction for optimal generators as
another main result. A lot of optimal families of size p − 1 can
be constructed from these optimal generators, some of which are
known to be from the Fermat-quotient sequences or from the
Frank–Zadoff sequences, but some families are new for p ≥ 11.
The relation between the Fermat-quotient sequences and the
Frank–Zadoff sequences is determined as a by-product.

Index Terms— Fermat-quotient sequences, Frank-Zadoff
sequences, perfect polyphase sequences, generators of perfect
sequences, optimal family of perfect sequences.

I. INTRODUCTION

SEQUENCES with good periodic correlation have been
widely studied for their application to various commu-

nication systems [11], [12], [15], [17], [20], [22], [24]–[26],
[28], [31], [38], [41], [45], [46], [48], [51], [52]. For
example, direct-sequence spread-spectrum systems employ a
single sequence of long period with the side-lobe correla-
tion magnitudes as small as possible (zero, for perfectness),
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which includes military communication systems requiring the
anti-jamming performance [47]. Recent applications include
such commercial mobile communication systems as CDMA,
WCDMA, and 3GPP LTE [1], [49] and global navigation
satellite systems as GPS [2] and GALILEO [13], in which
not only a single sequence with good autocorrelation but also
a family of sequences with good cross-correlation play an
essential role in their performance. Non-binary sequences with
good correlation also find application to pulse-compression
RADAR or active SONAR [7], [30], [35]. These sequences
are also used for the design of sequences with good aperiodic
or partial-periodic correlation, which are known to be more
important in practice [3], [6], [16], [21], [52].

Most common examples of non-binary sequences are
polyphase sequences which have values on the unit circle
of the complex plane. These polyphase sequences having
complex values with constant unit amplitude have been
widely studied to make sequences with the perfect periodic
autocorrelation, and to design phase-coded pulses for pulse-
compression [29], [34], [36]. Heimiller [25] proposed in 1961
the p-ary polyphase sequence of period p2 with the zero peri-
odic autocorrelation at all non-trivial phase-shifts (we will call
this ‘perfect’ in this paper), where p is a prime. It turned out
that these sequences are included in the sequences proposed
much earlier by Frank and Zadoff in which p needs not be
a prime, and now it is called Frank-Zadoff sequences [17].
This had been the only perfect sequence until Chu proposed
another type: N-ary (for N odd) or 2N-ary (for N even)
polyphase sequences of period N with the zero periodic
autocorrelation at all non-trivial phase shifts, where N is a
positive integer [11]. Later, this is generalized to chirp-like
sequences by Popović [45], and this generalized version was
recently adopted to 3GPP LTE standard, which is now called
Zadoff-Chu sequences [1, p. 31]. As an effort of reducing the
ratio between the number of phases and the length of sequence,
Milewski proposed some perfect polyphase sequences with
period m2k+1 over mk+1 phases [40]. These ideas have been
generalized for the direction of using a smaller alphabet size
by Liu and Fan [37] as well as by Blake and Tirkel [5].
Zhang and Golomb [52] proposed another variation of
Chu sequences which is perfect in periodic autocorrelation
and favorable aperiodic autocorrelation. Kumar proposed the
perfect polyphase sequences as generalized bent functions [31]
and Mow unified the constructions of perfect polyphase
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sequences [41]. Recently, Soltanalian and Stoica [48] treated
these problems and considered their existence from Mow’s
results as well as some results of analysis using relative
difference sets [39].

The cross-correlation of original Frank-Zadoff sequence
is also studied by Suehiro and Hatori [51]. They showed
that the sequence family has also optimal cross-correlation
in the sense of the lower bound of Sarwate [46] (we will
call this ‘optimal family’ in this paper). Gabidulin [19]
generalized these sequences and constructed pk-ary perfect
polyphase sequences of length p2k as well as optimal families
with these parameters. The cross-correlation of Zadoff-Chu
sequences is studied by Popović [45] with their generalization.
Popovic showed also that the sequence family has optimal
cross-correlation. Later, the cross-correlation of generalized
Zadoff-Chu sequences was studied by Kang et al. [27] and
is currently being studied by many others [32].

For a long time, the Fermat quotients have been studied
extensively because of its numerous characteristics and prop-
erties in number theory [8]–[10], [14], [23], [43], [50]. It is
interesting to find that, however, most of the results so far have
focused on the randomness of the binary sequences derived
from them. For example, Chen et al. [8] and Chen [9] showed
some randomness properties, and Ostafe and Shparlinski [43]
studied dynamical systems using Fermat quotients, and pro-
posed its application to communication and cryptography
systems. Fermat quotients and binary sequences derived from
them are generalized to Euler quotients [10]. Su [50] designed
a practical sequence families from the p-ary Fermat-quotient
sequences, showing their Hamming correlation property [33]
for frequency-hopping spread spectrum systems [4], [18].
Gomez and Winterhof [23] estimated the multiplicative char-
acter sums of the p-ary Fermat-quotient sequences.

The remaining part of this paper is organized as follows.
In Section II, we will show that a p-ary sequence of period p2

derived from the Fermat quotients is perfect, which we call
the Fermat-quotient sequence, and propose families of p-ary
sequences with optimal cross-correlation from this. It is
interesting to find that the same construction works for the
Frank-Zadoff sequence, both of which are perfect p-ary
polyphase sequences of period p2. As far as all authors
are aware of, this is a new observation that the p-ary
Fermat-quotient sequence is perfect. All the families in our
constructions are, so called, ‘completely optimal’ in the sense
that the cross-correlation of any two members in a family
is exactly p for all phase shifts. Our construction is more
general since it encloses previously known optimal families
from Frank-Zadoff sequences [51] and generates much more
different families with the same parameters. We remark that
most of this section was presented in [44].

In Section III, we will derive the conditions for an optimal
family and present a general approach (Theorem 4) to find
optimal families including those from Fermat-quotient or
Frank-Zadoff sequences. To do this, we introduce a sequence
called a ‘generator’. After defining the associated family of
certain generators, we derive the condition on the generators
(Theorem 5) so that all the sequences in the associated family
of the generator are perfect. Moreover, we investigate some

properties of the generators (Theorems 6, 7, 8) so that one
can form completely optimal families of size p − 1 by
selecting members from certain associated families of the
generators. We call such a generator an optimal generator.
We give an algebraic construction (Theorem 9) of optimal
generators, which gives not only those for Fermat-quotient and
Frank-Zadoff sequences but also, for p ≥ 11, those for some
new optimal families by Theorem 4.

In Section IV, we confirm that the construction in this paper
covers the families from optimal generators exhaustively by
computers for p ≤ 13. We conclude this paper with some
unsolved conjectures, including some relation with Mow’s
conjecture [41], [48] about the number of perfect polyphase
sequences.

II. THE p-ARY FERMAT-QUOTIENT SEQUENCE

OF PERIOD p2 AND ITS PROPERTIES

We begin by defining the correlation of sequences that we
will use in this paper. Throughout the paper, we let p be an
odd prime and denote by ω a complex primitive p-th root of
unity.

Definition 1: Let u = {u(t)|t ∈ Z, u(t) ∈ Zp} and
v = {v(t)|t ∈ Z, v(t) ∈ Zp} be p-ary sequences of period
N = p2. Then the periodic cross-correlation of u and v, when
they are cyclically distinct, is defined as

C(u, v, τ ) =
N−1∑

t=0

ωu(t+τ )−v(t), τ = 0, 1, 2, . . . . (1)

It is called the periodic autocorrelation when u = v or
they are cyclically equivalent, and is denoted by C(u, τ ).
A sequence u is said to be ‘perfect’ if its non-trivial periodic
autocorrelation is zero. That is, C(u, τ ) = 0 for all τ �≡ 0
(mod N).

A pair of cyclically distinct sequences is said to be ‘optimal’
if the magnitude of their periodic cross-correlation is upper
bounded by

√
N = p [44], [46] and if both are perfect. We call

such a pair an optimal pair. It is called a ‘completely optimal’
pair if the magnitude of their periodic cross-correlation is
equal to

√
N = p for all phase-shifts and if both are perfect.

A sequence family F is said to be ‘optimal’ if every pair
of distinct members of F is optimal. It is called ‘completely
optimal’ if every pair of distinct members of F is a completely
optimal pair.

Remark 1: Some authors defined a perfect sequence to be
the complex root-of-unity sequence {ωu(t)|t ∈ Z} such that the
autocorrelation C(u, τ ) in (1) is zero for all non-trivial phase
shifts. See [41], [42] for example. In this paper, instead, we
call its p-ary ‘phase’ sequence u = {u(t)|t ∈ Z, u(t) ∈ Zp} a
perfect sequence.

Definition 2 [8], [9], [14], [23]: Let

Q(t) = t p−1 − 1

p

where t is an integer with t �≡ 0 (mod p). Define a p-ary
Fermat-quotient sequence q = {q(t)|t ∈ Z} as

q(t) ≡
{

Q(t) (mod p) if t �≡ 0 (mod p),

0 (mod p) otherwise.
(2)



1078 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 2, FEBRUARY 2016

The following properties of Fermat-quotient sequences are
well-known [8], [9], [14], [23].

Lemma 1:
1) q(t) ≡ q(p2 ± t) (mod p) for any integer t. Therefore

q has period p2 and is palindromic.
2) q(tu±1) ≡ q(t) ± q(u) (mod p) for any integers t,

u �≡ 0 (mod p).
3) q(t + kp) ≡ q(t) − k

t (mod p) for any integer t �≡ 0
(mod p) and any integer k. Therefore q contains the
symbol ‘zero’ 2 p − 1 times and any nonzero symbol
p − 1 times in one period.

The last property in Lemma 1 can be seen very easily when
we write the sequence q as an array of size p × p:

q =

⎡

⎢⎢⎢⎢⎢⎣

q(0) q(1) · · · q(p − 1)
q(p) q(p + 1) · · · q(2 p − 1)

q(2 p) q(2 p + 1) · · · q(3 p − 1)
...

...
. . .

...

q((p − 1)p) q((p − 1)p + 1) · · · q(p2 − 1)

⎤

⎥⎥⎥⎥⎥⎦

(3)

The third item of Lemma 1 implies that every column
(except for the left-most one) is balanced. We will present
our first theorem, which is in fact a corollary to both
Theorems 2 and 3.

Theorem 1: Assume that q is a p-ary Fermat-quotient
sequence of period p2.

1) q is perfect.
2) The family of sequences

F(q) = {m · q|m = 1, 2, . . . , p − 1} (4)

is completely optimal, where m · q = {mq(t)|t ∈ Z}
is obtained by multiplying the constant m to every
component of q.

Now we would like to focus on the following sequences of
differences to identify the perfectness and find some essential
properties.

Definition 3: Let τ be an integer with 1 ≤ τ < p2.
We define a difference sequence ds,τ = {ds,τ (t)|t ∈ Z} of
a p-ary sequence s of period p2 by

ds,τ (t) ≡ s(t + τ ) − s(t) (mod p).

We note that the sequence ds,τ has also period p2. So we
may write one period of a difference sequence [44] ds,τ of a
p-ary sequence s of period p2 as a p × p array as follows:

ds,τ =

⎡

⎢⎢⎣

ds,τ (0) ds,τ (1) · · · ds,τ (p − 1)
ds,τ (p) ds,τ (p + 1) · · · ds,τ (2p − 1)

...
...

. . .
...

ds,τ ((p − 1)p) ds,τ ((p − 1)p + 1) · · · ds,τ (p2 − 1)

⎤

⎥⎥⎦.

(5)

We observe that the sequence s is perfect if its difference
sequence ds,τ is balanced for all τ = 1, 2, . . . , p2−1. We also
found that not only all their difference sequences are balanced
in one period p2, but also they could be balanced in every
row or column when they are written as p × p arrays.

Definition 4: We say that a p-ary sequence s of period p2

has ‘balanced difference sequences’ if every difference
sequence ds,τ is balanced for τ = 1, 2, . . . , p2 − 1.

We say that it has ‘RC-balanced difference sequences’ if,
in the p × p array representation of ds,τ as shown in (5),
every row is balanced for τ = p, 2 p, . . . , (p − 1)p and every
column is balanced for τ �≡ 0 (mod p).

Note that if s has RC-balanced difference sequences then it
has balanced difference sequences, but not conversely. The first
item of Theorem 1 is essentially a corollary of the following
theorem, whose proof will be covered by the discussions
in Section III.

Theorem 2: The Fermat-quotient sequence has
RC-balanced differece sequences.

We will characterize some transformations which preserve
the perfectness of p-ary sequences of period p2. These have
been mentioned and even proved earlier [25], [35]. Here, we
will consider preserving RC-balanced differences. Preserving
the RC-balanced differences implies preserving the
perfectness, but not conversely in general.

Lemma 2: Let s = {s(t)|t ∈ Z} be a p-ary sequence of
period p2. If s has RC-balanced difference sequences, then so
do all the resulting sequences of the following transformations.
Hence, they are also perfect.

1) (Constant Multiples) m · s = {ms(t)|t ∈ Z} for m �≡ 0
(mod p).

2) (Constant Column Additions) For any 0 ≤ j < p, A j (s)
is the sequence obtained from s by adding a constant 1
(mod p) to all the elements in the j -th column of s in
the p × p array representation.

3) (Column Permutation) Pσ (s) is the sequence obtained
from s by permuting the order of columns of s in the
p × p array representation according to σ , where σ
denotes a permutation in p symbols.

Proof:
1) Let s′ = m · s. Then ds′,τ = m · ds,τ for all τ .
2) Let s′ = A j (s). When τ ≡ 0 (mod p), the difference

s′(t+τ )−s′(t) for t = 0, 1, . . . , p2−1 are the difference
between the entries in a column of the p × p array.
Therefore, ds′,τ = ds,τ .
When τ �≡ 0 (mod p), for t = 0, 1, . . . , p2 − 1,

s′(t + τ ) − s′(t)

=

⎧
⎪⎨

⎪⎩

(s(t + τ ) + 1) − s(t) t + τ ≡ j (mod p2)

s(t + τ ) − (s(t) + 1) t ≡ j (mod p2)

s(t + τ ) − s(t) otherwise

Therefore, ds′,τ = Ap−1
j A j−τ (ds,τ ).

3) Observe that it is enough to show that RC-balancedness
is preserved for σ = (ab), the transposition of a-th and
b-th columns. Let s′ = Pσ (s). Since s has RC-balanced
difference sequences, ds,τ is row-balanced for τ ≡ 0
(mod p) and column-balanced for τ �≡ 0 (mod p) in
its p × p array representation.
For τ ≡ 0 (mod p), it is easy to see that

ds′,τ = Pσ (ds,τ ).

Therefore, row-balancedness is preserved.
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TABLE I

EXAMPLE OF OPTIMAL FAMILIES FROM THE FERMAT-QUOTIENT SEQUENCE FOR p = 5

For τ �≡ 0 (mod p), it is not difficult to see that
any column of ds′,τ is a column of ds,τ ′ for some
τ ′ �≡ 0 (mod p). Therefore, column-balancedness is
preserved.

We would like to recall that the family in Theorem 1
is obtained by applying all possible constant multiplications
(First item of Lemma 2). Now, we consider the second
transformation of Lemma 2. We denote:

Aa =
p−1∏

j=0

Aa( j )
j ,

where a = {a(t)|t ∈ Z} is an integer sequence of period p.
Then, the transform Aa(s) of s becomes the following:

Aa(s) = {s(t) + a(t) (mod p)|t ∈ Z}.
The following theorem is a generalized version of the family

in Theorem 1 including the Constant Column Additions as
well as the Constant Multiples. In fact, the second item of
Theorem 1 is a corollary to the following theorem, whose
proof will be covered by the discussions in Section III.

Theorem 3: Let am be p − 1 integer sequences of period
p for m = 1, 2, . . . , p − 1, not necessarily all distinct.
We construct a family of sequences of size p − 1 from the
p-ary Fermat-quotient sequence q of period p2 using am as

FA(q) = {m · Aam (q)|m = 1, 2, ..., p − 1}. (6)

Then, the family FA(q) is completely optimal.
Example 1: Table I shows optimal families from

Theorems 1 and 3 for the case p = 5. Note that
FA(q) = {m · Aam (q)|1 ≤ m < p} in the second row
is also an optimal family with a1 = (0, 0, 0, 0, 0), a2 =
(0, 0, 1, 0, 0), a3 = (2, 0, 0, 0, 1), and a4 = (0, 1, 2, 3, 4).

Remark 2: It is quite surprising that any pair from FA(q) is
completely optimal, considering that they could be distinct
only in the constant multiplication. That is, Theorem 3 works
even if the integer sequences am are all the same. We have
checked the other direction by computer for p = 7: the cross-
correlation of m ·Aa(q) and m ·Ab(q) for all possible different
pairs (a, b), with the same constant m �≡ 0 (mod 7). It turned
out that the pairs never be optimal.

Remark 3: It is well-known in [17] and [25] that the
p-ary Frank-Zadoff sequence of period p2 is perfect for every
odd prime p. It has been first defined in the middle of 1950’s,

though the papers have appeared in 1961 and 1962. We denote
the sequence as z = {z(t)|t ∈ Z} in this paper.

The structure of the Frank-Zadoff sequence can be seen
when we write its one period as a p × p array, where the
indices t of z(t) runs the first row from left to right, and then
the second row, etc, which is the same as that in (3). Such
a p × p array of z is the result of mod p reduction of the
following:

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 · · · p
2 4 6 · · · 2 p
3 6 9 · · · 3 p
...

...
...

. . .
...

p 2 p 3 p · · · p2

⎤
⎥⎥⎥⎥⎥⎦

(7)

We note that Theorem 1 will work if the sequence is replaced
with the Frank-Zadoff sequence, which is the well-known
results from many others [17], [25], [51].

Similar to the last item of Lemma 1, for the p-ary
Frank-Zadoff sequence z = {z(t)|t ∈ Z} of period p2, we
have

z(t + kp) ≡ z(t) + k(t + 1) (mod p), (8)

for any integer t �≡ 0 (mod p) and any integer k. It is obvious
from this, as well as from the array structure of (7), that all
the columns and rows are balanced except for the right-most
column and the bottom row.

It turned out that Theorem 2 works if the sequence is
replaced with the Frank-Zadoff sequence. That is, all its
difference sequences are RC-balanced. We omit the proof since
it is quite straightforward. Now, it is not too much surprising
that Theorem 3 also works if the sequence is replaced with
the Frank-Zadoff sequence. We will eventually prove this and
discuss a lot more in general in the next section.

III. GENERAL APPROACH FOR OPTIMAL FAMILY

Recall that we construct optimal families of the form m ·s in
Theorem 1 and of the form m ·Aam (s) in Theorem 3, when s is
the Fermat-quotient sequence (or the Frank-Zadoff sequence,
which will soon be proved). In this section, we will investigate
some similar construction of optimal families including the
third item in Lemma 2. We hope that, when s is a p-ary perfect
sequence of period p2, some set of sequences given by

FP(s) = {m · Aam (Pσ (s))|m = 1, 2, . . . , p − 1} (9)
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s =

⎡

⎢⎢⎢⎢⎢⎣

s(0) s(1) · · · s(p − 1)
s(0) + g(0) s(1) + g(1) · · · s(p − 1) + g(p − 1)

s(0) + 2g(0) s(1) + 2g(1) · · · s(p − 1) + 2g(p − 1)
...

...
. . .

...
s(0) + (p − 1)g(0) s(1) + (p − 1)g(1) · · · s(p − 1) + (p − 1)g(p − 1)

⎤

⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ [s(0) s(1) · · · s(p − 1)] +

⎡
⎢⎢⎢⎣

0
1
...

p − 1

⎤
⎥⎥⎥⎦ [g(0) g(1) · · · g(p − 1)]

	= 1T s + δT g, (11)

is an optimal family for some am and σ . This construction
does not increase the size of the optimal family, but this will
give much more general description of constructing optimal
families from a given perfect sequence. It turned out that we
can find the Frank-Zadoff sequence in the family FP(s) when
we substitute s for the Fermat-quotient sequence in (9), or
vice versa.

It turned out that not every σ results in an optimal family
in (9). It is obvious that the following two cases work and in
fact it is implicitly mentioned in [35]:

1) Taking a cyclic shift on the order of the columns in the
p × p array.

2) Decimating the order of the columns in the p × p array.
It is not difficult but tedious to prove that (1) taking a cyclic
shift on a sequence itself is the same as some combination
of taking a cyclic shift on the order of columns and column-
rotations on its array structure, and (2) decimating a sequence
itself is the same as some combination of decimating the order
of columns and column-rotations on its array structure. Here,
a column-rotation is to rotate a column vertically in the array
structure.

In this section, we will focus on the p-ary perfect sequences
of period p2 which have RC-balanced difference sequences.
When we write the difference sequence in a p× p array, either
every row is balanced or every column is balanced. For such
a sequence, there are p2 −1 difference sequences, and we will
focus on the difference sequence ds,p at τ = p and we will
see if it has period p. If ds,p has period p, then the sequence
s can be uniquely determined from s(0), s(1), . . . , s(p − 1)
and ds,p(0), ds,p(1), . . . , ds,p(p − 1).

Definition 5: When a p-ary sequence s = {s(t)|t ∈ Z} of
period p2 has a difference sequence ds,p that has period p,
then ds,p is called a generator of s. On the other hand, given
any p-ary sequence g = {g(t)|t ∈ Z} of period p, the set of all
the p-ary sequences of period p2 having g as their common
generator is called the associated family of g, denoted by S(g).

Remark 4: A sequence s = {s(t)|t ∈ Z} ∈ S(g) can be
written as a p×p array by setting t = pi+ j in which the (i, j)
entry is given by, for i = 0, 1, ..., p−1 and j = 0, 1, ..., p−1,

s(pi + j) = g( j)i + s( j). (10)

This is shown in (11), as shown at the top of this page
where 1T is the constant column of 1’s, δT is the column

of entries 0, 1, 2, ..., p −1, and s and g are the row vectors of
length p representing the first p terms of s and g, respectively.
Since there are p p choices for s, the associated family of a
given generator contains exactly p p different sequences.

Remark 5: From the third property of Fermat-quotient
sequences in Lemma 1 and (10), it is obvious that Fermat-
quotient sequences have a generator given as

g( j) ≡ − j p−2 (mod p) (12)

for all j ∈ Zp. Similarly, from (8) and (10), it is obvious that
Frank-Zadoff sequences have a generator given as

g( j) ≡ j + 1 (mod p) (13)

for all j ∈ Zp.
The p p different sequences in the associated family S(g)

of a generator g are not all cyclically distinct. The following
lemma counts the number of cyclically inequivalent classes
in S(g) when g is not a constant sequence.

Lemma 3: Let g be a non-constant generator of period p.
Then, the associated family S(g) has p p−1 cyclically inequiv-
alent classes each of which has size p.

Proof: Consider any member s ∈ S(g). Then, there exist
p2 cyclic shifts of s in general since s has period p2. Consider
its cyclic shift by τ . When τ �≡ 0 (mod p), we claim that
this cyclic shift will not have the generator g. In fact, its
generator is a cyclic shift of g by τ , which is clearly different
from g, since g has no subperiod less than p. Therefore, any
of them will not be in S(g). On the other hand, when τ ≡ 0
(mod p), that is, when τ = kp, the cyclic shift of s by τ will
share the same generator g with s. There exist p of them for
k = 0, 1, ..., p − 1.

Example 2: Let g = (0, 1, 2) as a vector of length p = 3.
Then the following three members of S(g) are cyclically
equivalent with each other:

⎡

⎣
0 0 0
0 1 2
0 2 1

⎤

⎦,

⎡

⎣
0 1 2
0 2 1
0 0 0

⎤

⎦,

⎡

⎣
0 2 1
0 0 0
0 1 2

⎤

⎦.

Remark 6: There are lots of p-ary sequences of period p2

which do not have a generator. A p-ary sequence of period p2

has a generator if its difference sequence ds,p has period p.
Not every p-ary sequence of period p2 having a genera-
tor is perfect. Furthermore, the followings are completely
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open: (1) every perfect sequence has a generator; (2) every
perfect sequence with RC-balanced difference sequence has
a generator. We do not have a proof of any of the above
and we do not know a counterexample to any of the above
either.

From Remark 6, there seems to be no relation between
the fact that a sequence has a generator and those that a
sequence is perfect. However, Fermat-quotient sequences and
Frank-Zadoff sequences have generators with some special
property, which we will characterize in the following
definition. Here,

m · g = {mg(t) (mod p)|t ∈ Z}.
Definition 6: A generator g is a perfect generator if all the

sequences s ∈ S(g) are perfect. A generator g is an optimal
generator if two sequences u ∈ S(m · g) and v ∈ S(n · g)
form an optimal pair for any m �≡ n (mod p) and m, n �≡ 0
(mod p).

By Definition 6, an optimal generator is a perfect generator,
but not conversely. Example 3 shows a perfect generator that
is not an optimal generator.

Example 3: Let (0, 3, 2, 4, 1, . . .) be a generator g of
period 5. Then, one example of s ∈ S(g) is shown below.

s =
⎡

⎣
1 0 3 1 4
1 3 0 0 0
1 1 2 4 1
1 4 4 3 2
1 2 1 2 3

⎤

⎦

It is a perfect sequence and so is every member of S(g).
It is easy to find a non-optimal pair u ∈ S(g) and v ∈ S(2 · g).
One choice would be obtained by setting the first row of
both sequences (0, 0, 0, 0, 0). Therefore, g is not an optimal
generator.

On the other hand, we will show later in Lemma 6 that
the generators of the Fermat-quotient sequences and the
Frank-Zadoff sequences are optimal generators.

Theorem 4: Let g be an optimal generator of period p.
Then, picking up any one member from S(m · g) for each
m = 1, 2, . . . , p − 1 gives an optimal family FG(g) of
size p − 1, where S(m · g) is the associated family of the
generator m · g.

Here, the proof is obvious by the definition of an optimal
generator. We would like to note the relation between
two sequences sm ∈ S(m · g) in the above theorem and
m · Aam (Pσ (s)) in (9). One can select am and an optimal
generator g so that they coincide with each other if σ
results in an optimal family of the form (9). Therefore, in
order to characterize those permutations σ , we only have to
characterize optimal generators.

The following lemma is about the vector sum of a prime
regular polygon used in the proof of Theorem 5. Its proof is
implied by [48, Th. 1].

Lemma 4: Let p be a prime and a = {a(i)|i ∈ Z,
a(i) ∈ Zp} be a p-ary sequence of period p. Then a is
balanced if and only if

p−1∑

i=0

ωa(i) = 0.

The following theorem describes some properties of perfect
generators. We recall that not every perfect sequence has
a generator and that not every sequence with RC-balanced
differences has a generator either. Here, a generator g is
said to be balanced if its one period is a permutation
of {0, 1, 2, . . . , p − 1}.

Theorem 5 (Perfect Generator Construction): The follow-
ings are equivalent:

1) g is a perfect generator.
2) g is balanced, or equivalently, it is a permutation of

{0, 1, ..., p − 1}.
3) Every sequence s ∈ S(g) has RC-balanced difference

sequences.
Proof: Recall that any sequence s ∈ S(g) can be written

as in (11).

1) → 2): The autocorrelation of s ∈ S(g) at τ = p is given
by

C(s, p) =
p−1∑

i=0

p−1∑

j=0

ωs(p(i+1)+ j )−s(pi+ j ) = p
p−1∑

j=0

ωg( j ).

From Lemma 4, it becomes zero if and only if g is
balanced

2) → 3): Consider a sequence s ∈ S(g) with a balanced g
and its difference sequence ds,τ .
Case 1 (τ = kp ≡ 0 (mod p)): The set of elements from
i -th row of the array representation of ds,kp is given as

{s(p(i + k) + j) − s(pi + j)| j = 0, 1, . . . , p − 1}
= {kg( j)| j = 0, 1, . . . , p − 1},

which must be balanced since k �≡ 0 (mod p) and g( j)
is balanced.
Case 2 (τ �≡ 0 (mod p)): The element in i -row and j -th
column of the array representation of ds,τ is given as

s(pi + j + τ ) − s(pi + j)

= (s( j + τ ) − s( j)) − i(g( j + τ ) − g( j)).

Therefore, the set of elements in j -th column (for i =
0, 1, ..., p − 1) must be balanced since g( j + τ ) �≡ g( j)
(mod p) for any j .

3) → 1): Obvious by definition.

Remark 7: Note that the result of the construction in
Theorem 5 does not produce new perfect sequences. All the
sequences in the associated family of the perfect generators
from Theorem 5 are essentially the same as those obtained
by Heimiller’s generalization [17]. The sequences are also
considered in [31] as bent functions, and are treated by Mow’s
unified construction [41].

Next we determine the property of optimal generators.
To do this, we have to use the periodic Hamming cross-
correlation [33] of two p-ary sequences u and v of period
p, denoted by H (u, v, τ ), and defined as follows:

H (u, v, τ ) =
p−1∑

t=0

h(u(t + τ ), v(t)), τ = 0, 1, 2, . . . , p − 1,
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where h(x, y) = 1 if x = y and h(x, y) = 0 otherwise. Note
that H (u, v, τ ) = 1 is equivalent to the existence of a unique
solution to u(t + τ ) ≡ v(t) (mod p).

Theorem 6: A generator g is an optimal generator if

H (m · g, n · g, τ ) = 1

for all τ = 0, 1, 2, . . . , p − 1, and for any m, n �≡ 0
(mod p) and m �≡ n (mod p). Moreover, any family given
by Theorem 4 from the optimal generator above is completely
optimal.

Proof: (Proof of Perfectness) Assume that g satisfies
H (m · g, n · g, τ ) = 1 for all τ = 0, 1, 2, . . . , p − 1, and
for any m, n �≡ 0 (mod p) and m �≡ n (mod p). Suppose
that g is not balanced, that is, g(a) ≡ g(a + b) (mod p) for
some 0 ≤ a < p and 1 ≤ b < p. Observe that g(a) �≡ 0
(mod p), since otherwise, H ≥ 2 for all m �= n for τ = b.
Note that H (m · g, n · g, τ ) = 1 for any τ and any m �= n
implies that there exists a unique solution t in 0 ≤ t < p to
the equation mg(t +τ ) ≡ ng(t) (mod p) for any given m �= n
and τ . Note also that there exists a unique z in 0 ≤ z < p such
that g(z) = 0, since the equation mg(t) ≡ ng(t) (mod p) for
the case of τ = 0 must also have a unique solution. Therefore,
a �≡ z (mod p) and a + b �≡ z (mod p).

Denote by tm the unique solution to the equation
mg(t + b) ≡ g(t) (mod p), for each m = 2, 3, ..., p − 1.
Observe that tm �≡ z (mod p) since tm ≡ z (mod p) implies
g(tm) = 0 = g(z) and hence H (m ·g, g, τ = b) ≥ 2. Similarly,
we have tm �≡ z − b (mod p) and tm �≡ a (mod p). Since the
three elements z, a, z −b must all be distinct mod p, we have

|{tm |m = 2, 3, ..., p − 1}| ≤ p − 3. (14)

On the other hand, mg(tm + b) ≡ g(tm) (mod p) implies that
m ≡ g(tm)

g(tm+b) (mod p). This shows that t2, t3, . . . , tp−1 are
all distinct, which is a desired contradiction to (14). Therefore
g must contain any symbol at most once. Since it has length p,
it must be balanced.

(Proof of optimality) From Lemma 2, m ·g is also a perfect
generator for all m �≡ 0 (mod p). Let s ∈ S(g), u ∈ S(m · g)
and v ∈ S(n · g). It is easy to see that there exist integer
sequences a and b satisfying u = mAa(s) and v = nAa(s).
Therefore,

u(t) = m(s(t) + a(t)) and v(t) = n(s(t) + b(t)),

for all t . Since s ∈ S(g), it must be of the form

s(t) = s(pi + j) = s( j) + ig( j),

for all t = pi + j . Therefore, the cross-correlation of two
sequences u and v can be computed as

C(u, v, τ )

= C(m · Aa(s), n · Ab(s), τ )

=
p2−1∑

t=0

ωms(t+τ )−ns(t)+ma(t+τ )−nb(t)

=
p−1∑

i=0

p−1∑

j=0

ωms(pi+ j+τ )−ns(pi+ j )+ma(pi+ j+τ )−nb(pi+ j )

=
p−1∑

i=0

p−1∑

j=0

ωms( j+τ )+mig( j+τ )−ns( j )−nig( j )+ma( j+τ )−nb( j)

=
p−1∑

j=0

ωms( j+τ )−ns( j )+ma( j+τ )−nb( j)
p−1∑

i=0

ωi{mg( j+τ )−ng( j )}

(15)

Now, the inner sum of (15) is not zero and have magnitude p
if and only if mg( j + τ ) ≡ ng( j) (mod p). But this relation
must be satisfied for exactly one value j0 of j since the number
of solutions j is the Hamming correlation value of m · g and
n · g at the shift τ . Thus, the inner sum vanished except for
j = j0, and the outer-sum becomes a single term for j = j0.
That is,

|C(u, v, τ )| = p

for all τ = 0, 1, 2, . . . , p − 1, and for any m, n �≡ 0
(mod p) and m �≡ n (mod p). Therefore g is an optimal
generator.

Remark 8: Theorem 6 gives a sufficient condition on a gen-
erator to be optimal. We do not know whether there exists an
optimal generator without such condition. We confirmed that
every optimal generator satisfies the condition in Theorem 6
for p ≤ 13 using computers.

Theorem 7 gives some transformations that preserve the
optimality of a generator.

Theorem 7: If g = {g(t)|t ∈ Z} is an optimal generator
of period p, then the following generators are also optimal
generators.

1) (Cyclic Shifts) Tτ (g) = {g(t + τ )|t ∈ Z} for any
integer τ .

2) (Constant Multiples) m · g for m �≡ 0 (mod p).
3) (Decimations) Dd(g) = {g(dt)|t ∈ Z} for d �≡ 0

(mod p).
Proof:

1) If u and v form an optimal pair of sequences, then so
do Tτ (u) and Tτ (v) for any integer τ , and vice versa.
Here, we use the operator Tτ (·) to work on the sequence
of period p2 as a cyclic shift by τ . From (11), we have

u ∈ S(m · Tτ (g))

↔ u = 1T u + m · δT Tτ (g)

= 1T u + Tτ (m · δT g)

↔ T−τ (u) = 1T T−τ (u) + m · δT g ∈ S(m · g).

Assume that m, n �≡ 0 (mod p) and m �≡ n (mod p).
If u ∈ S(m ·Tτ (g)) and v ∈ S(n ·Tτ (g)), then T−τ (u) ∈
S(m ·(g)) and T−τ (v) ∈ S(n ·(g)), and hence, they form
an optimal pair, and so do u = Tτ (T−τ (u)) and v.

2) Obvious.
3) We may proceed similarly as the first item of the above,

using the fact that u and v form an optimal pair of
sequences if and only if so do Dd (u) and Dd (v) for
d �≡ 0 (mod p) [35]. Here, we use the operator Dd (·)
to work on the sequence of period p2 as a decimation
by d .
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Now we focus on the balanced generators g of period p.
Then, the first and second transformations in Theorem 7
on a balanced g never coincide. Therefore, one can find
p(p − 1) different optimal generators from a given optimal
generator. On the other hand, things are more complicated
when we include the third transformation into the picture.
It turned out that some decimations of a balanced g can also be
obtained by applying some combination of the first and second
transformations, while some other decimations of g cannot be
obtained in such a way. To discuss this property further, we
need the following definition of “equivalence” excluding the
third transformation (decimations) in Theorem 7:

Definition 7: Two p-ary generators of the same
period p are said to be equivalent if one can be obtained
from another by applying some combination of the first and
second transformations in Theorem 7.

Consider the set of all the balanced generators of period p.
It is exactly the same as the set of all the permutations on
p symbols. We will consider the equivalence relation on this
set which is given in Definition 7. We denote by Class(g) the
equivalence class containing the generator g.

Lemma 5: Consider the set of all the balanced generators
g of period p, and its partition into equivalence classes.

1) For any g, there exists a generator h ∈ Class(g) such
that h(0) = 0 and h(1) = 1.

2) These are equivalent:
a) There exists h ∈ Class(g) that satisfies h(ab) ≡

h(a)h(b) (mod p) for any integers a and b.
b) Any decimation of g belongs to Class(g).
c) Any decimation of g′ belongs to Class(g) for any

g′ ∈ Class(g).
Proof:

1) There exists a unique value of t that satisfies g(t) = 0.
Since g is balanced, g(t + 1) �≡ 0 (mod p). Let
h = g(t + 1)−1Tt (g). Obviously, h ∈ Class(g) and
h(0) = 0, h(1) = 1

2) a) → b): Obviously, a generator h satisfying
h(ab) ≡ h(a)h(b) for all a and b has h(0) = 0
and h(1) = 1. Note that Dd (h) = {h(dt)|t =
0, 1, . . . , p − 1} = h(d)h, so any decimation of
h is equivalent with h.
Now, let g = m · Tτ (h) with such h ∈ Class(g).
From the relation, Dd (g) = Dd (m · Tτ (h)) =
{mh(dt + dτ )} = m · TdτDd(h), so Dd(g) ∈
Class(h) = Class(g) for any d �≡ 0 (mod p).

b) → c): We can find the equivalent generator g′ =
m · Tτ (g). Since Dd(g′) = m · TdτDd (g), any
decimations of g′ also belongs to Class(g′) =
Class(g).

c) → a): From Lemma 5-1), we can find h that any
decimation of h belongs to Class(g) and h(0) =
0, h(1) = 1. Let Dd (h) = m · Tτ (h), so h(dt) =
mh(t +τ ) for all t with some m �≡ 0 (mod p) and
some integer τ . In this case τ must be congruent to
0 since mh(0 + τ ) = h(0) = 0. So h(dt) = mh(t)
for all t with some m determined by d . We denote
such m as md . The case with d = 0 also satisfies
the equation with m0 ≡ 0 (mod p).

We have shown that h(dt) = md h(t) for any d and
t . So, it is also true that h(dt) = mt h(d) for any d
and t , and it indicates mt h(d) = mdh(t) for any d
and t . Obviously, m1 = 1, so the equation becomes
mt = h(t) putting d = 1. So h(dt) = mt h(d)
becomes h(dt) = h(d)h(t) for any d and t .

Theorem 8: Let g be a balanced p-ary generator of
period p. If g is equivalent (in the sense of Definition 7) with
all its decimations, then it satisfies the Hamming correlation
property in Theorem 6. Hence, it is an optimal generator.

Proof: Assume that g is equivalent with all its decima-
tions. From the second item of Lemma 5, this implies the
existence of a generator h ∈ Class(g) such that h(ab) ≡
h(a)h(b) (mod p) for all a and b. Now, claim that h satisfies
the Hamming correlation property in Theorem 6. Then, it is
obvious that so does g.

To show the claim, we have to argue that the equation

mh(t + τ ) ≡ nh(t) (mod p)

has a unique solution t (mod p) for all τ , m, n �≡ 0 (mod p)
and m �≡ n (mod p). The multiplicative property of h implies
that h(0) = 0 and h(1) = 1.

When τ ≡ 0 (mod p), the equation becomes

mh(t) ≡ nh(t) (mod p).

Therefore, h(t) = 0 and hence t = 0 is a solution, since
otherwise we have m ≡ n (mod p), and it is the only solution
since h is balanced.

When τ �≡ 0 (mod p), since t = 0 can never be a solution,
one can write

h(t + τ ) ≡ h(t)h(
t + τ

t
),

or

h(
t + τ

t
) ≡ h(t + τ )

h(t)
≡ n

m
(mod p).

Since h is balanced in a period p, the above has a unique
solution t .

Remark 9: It is open whether the converse of Theorem 8
is true in general. We confirmed that this is true for p ≤ 23
using computers.

Lemma 6: The generator of Fermat-quotient sequences
given by (Remark 5)

g(t) ≡ −t p−2 (mod p), t = 0, 1, 2, . . . ,

is an optimal generator. So is the generator of Frank-Zadoff
sequences given by (Remark 5)

g(t) ≡ t + 1 (mod p), t = 0, 1, 2, . . . .

Proof: Let h = Dd (g). For the generator of Fermat-
quotient sequences, we have h(t) = g(dt) = −(dt)p−2 =
−d p−2g(t) for all t . Therefore, any decimation of g is a
constant multiple of g, and we are done by Theorem 8. For
the generator of Frank-Zadoff sequence, similarly, we have
h(t) = g(dt) = dt + 1 = T 1−d

d
(dg(t)) for all t .

We now present an algebraic construction for some impor-
tant class of optimal generators, which satisfy the sufficient
condition in Theorem 8. Let g = {g(t)|t ∈ Z} be an
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optimal generator that is balanced and any of its decimations
is equivalent to itself in the sense of Definition 7. It can be
uniquely determined if g(0) = 0, g(1) = 1 and the value g(α)
is given for a primitive root α of p. Let g(α) = β. Then, from
the multiplicative property in the second item of Lemma 5, we
have g(αl) = βl for any l = 0, 1, 2, .... Since g is balanced,
β must also be a primitive root of p.

Theorem 9 (Optimal Generator Construction): Let τ be
any integer, m be an integer with m �≡ 0 (mod p) and κ
be an integer relatively prime to p − 1. Then, the sequence
g(p, κ, m, τ ) = {g(t; p, κ, m, τ )|t ∈ Z} defined as:

g(t; p, κ, m, τ ) ≡ m(t + τ )κ (mod p), (16)

is a perfect generator and is equivalent with its decimated
sequences, and conversely. Hence, g(p, κ, m, τ ) is an optimal
generator.

Proof: Observe that it is enough to prove the case m = 1
and τ = 0 since any two generators having the same κ are
equivalent, since

g(p, κ, m, τ ) = m · g(p, κ, 1, τ ),

and

g(t; p, κ, 1, τ ) = g(t − τ ; p, κ, 1, 0), ∀t .

Now, consider the generator given by

g(t; p, κ, 1, 0) ≡ tκ (mod p).

It is balanced since κ is relatively prime to p − 1. Moreover,
g(ab) = g(a)g(b) for any a and b. The proof is now
completed using the second item of Lemma 5.

To prove the converse, we note that g(p, κ, 1, 0) and
g(p, λ, 1, 0) are inequivalent if κ �≡ λ (mod p − 1). So we
can find ϕ(p − 1) inequivalent generators of period p varying
κ of g(p, κ, 1, 0), where ϕ is the Euler’s totient function.
We already noted that if a p-ary perfect generator
g = {g(t)|t ∈ Z} with g(0) = 0, g(1) = 1 and all of its
decimated sequences are equivalent with g, then g(t) has the
multiplicative property in 2a) of Lemma 5 and so can be
represented as g(αl) = βl for some primitive roots α and
β of p. This indicates there are at most ϕ(p − 1) inequivalent
generators each of which is balanced and equivalent with all
of its decimations.

Remark 10: Let m, n be integers with m, n �≡ 0 (mod p).
Let κ, λ be integers relatively prime to p − 1 and τ, μ be
any integers. Then, two optimal generators g(p, κ, m, τ ) and
g(p, λ, n, μ) are equivalent if and only if κ ≡ λ (mod p −1).
There are exactly ϕ(p − 1) inequivalent optimal generators
of period p of the form given in Theorem 9, where ϕ is
the Euler’s totient function. It is open whether there exists
any other type of optimal generators. For p ≤ 13, it is
confirmed by computers that every optimal generator is given
by Theorem 9.

Remark 11: Observe that, from Remark 5, the integer
sequence g(p, p−2, p−1, 0) is the generator of p-ary Fermat-
quotient sequence, and the integer sequence g(p, 1, 1, 1) is the
generator of p-ary Frank-Zadoff sequence. Therefore, they are
equivalent if and only if p = 3. We note that the optimality

of these generators in Lemma 6 proves Theorems 2 and 3.
Furthermore, note that we obtain an optimal family FG(gz)
in Theorem 4 when we use the generator gz = g(p, 1, 1, 1)
of a p-ary Frank-Zadoff sequence. This gives a proof of the
assertion at the end of Section II that Theorem 3 works if the
sequence is replaced with the Frank-Zadoff sequence. That is,
one can arrange such that

FG(gz) = FA(z)

where z is the p-ary Frank-Zadoff sequence of period p2.
Remark 12: The p × p array structure of both Fermat-

quotient sequences and Frank-Zadoff sequences gives a clue
to how they are related. From the third property in Lemma 1
and (8), they differ only in two aspects: the generator and
the first p terms. That is, for Fermat-quotient sequences
q(t) = q(i p + j),

q(i p + j) ≡ gq( j)i + q( j) ≡ − j p−2i + q( j) (mod p)

and, for Frank-Zadoff sequences z(t) = z(i p + j),

z(i p + j) ≡ gz( j)i + z( j) ≡ ( j + 1)i + z( j) (mod p)

all for i, j ∈ Zp. This gives the following relation between
q(i p + j) and z(i p + j):

Case 1: For j �≡ 0 (mod p),

(− j)q(i p + j) ≡ i + (− j)q( j) (mod p),

or

− j ( j + 1)q(i p + j) ≡ ( j + 1)i − j ( j + 1)q( j) (mod p),

or

− j ( j + 1)q(i p + j) + j ( j + 1)q( j) + z( j)

≡ ( j + 1)i + z( j) ≡ z(i p + j) (mod p).

Case 2: For j ≡ 0 (mod p),

q(i p + j) ≡ 0 (mod p) or

q(i p + j) + i + 1 ≡ i + 1 ≡ z(i p + j) (mod p),

which gives a conversion from Fermat-quotient sequences to
Frank-Zadoff sequences.

IV. NUMERICAL RESULTS AND CONCLUDING REMARKS

We have done some exhaustive computer search for optimal
generators. The number of inequivalent optimal generators of
period p is confirmed to be ϕ(p − 1) for p ≤ 13. This
implies that all the optimal generators of period p ≤ 13 can
be constructed from Theorem 9. The number of inequivalent
optimal generators of period p with the Hamming correlation
property of Theorem 6 is also confirmed to be ϕ(p − 1) for
p ≤ 23. These results support the following:

Conjecture 1: All the optimal generators can be con-
structed by Theorem 9.

In general, there are huge number of perfect generators
but only a small portion of them are optimal generators.
We observe that the number of perfect generators is p!
(Theorem 5) while the number of optimal generators from
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TABLE II

LIST OF ALL THE INEQUIVALENT OPTIMAL GENERATORS FOR p ≤ 13
AND THEIR REPRESENTATIONS OF THE FORM g[p, κ, 1, 0]

Fig. 1. Hierarchy of p-ary perfect sequences of period p2.

Theorem 9 is p(p − 1)ϕ(p − 1). Now, the number of inequiv-
alent (in the sense of Definition 7) perfect generators of period
p is (p − 2)!. All the inequivalent optimal generators which
are exhaustively found by computer are shown in Table II for
p ≤ 13, including their representations of the form
g[p, κ, 1, 0]. Here, (F) indicates that it is the generator of
Fermat-quotient sequence and (Z) indicates that it is the
generator of Frank-Zadoff sequence.

Figure 1 shows the hierarchy of p-ary perfect sequences
of period p2. A perfect sequence may or may not have
RC-balanced difference sequences. A perfect sequence with
RC-balanced differences may or may not have the perfect
generator. The generator of a perfect sequence may or may
not be an optimal generator. We have an example of perfect
generator which is not an optimal generator (Example 3). The
optimal generator of a perfect sequence, if it has an optimal
generator, may or may not come from Theorem 9. It shows
a brief summary of Theorems 5, 6, 8 and 9. The shaded or
dotted area indicates that non-existence has not been proved
yet and that no example is currently known either.

Mow [41] conjectured that the number of p-ary perfect
sequences of period p2 may not exceed p!p p. The number of
such sequences that can be generated by the perfect generators
derived in Theorem 5 is exactly p!p p. Therefore, if Mow’s
conjecture is true, then both of the shaded areas outside
‘Perfect Generators’ in Figure 1 will be empty. On the other
hand, the truth of Conjecture 1 above implies that the inner
dotted area becomes empty.
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