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Reduced-Complexity Belief Propagation Decoding for Polar Codes*

Jung-Hyun KIM'®, Inseon KIM™, Gangsan KIM'®, Nonmembers, and Hong-Yeop SONG 'Y, Member

SUMMARY  We propose three effective approximate belief propagation
decoders for polar codes using Maclaurin’s series, piecewise linear function,
and stepwise linear function. The proposed decoders have the better perfor-
mance than that of existing approximate belief propagation polar decoders,
min-sum decoder and normalized min-sum decoder, and almost the same
performance with that of original belief propagation decoder. Moreover,
the proposed decoders achieve such performance without any optimiza-
tion process according to the code parameters and channel condition unlike
normalized min-sum decoder, offset min-sum decoder, and their variants.
key words: polar codes, belief propagation decoding, approximation

1. Introduction

Polar codes [1] are the first theoretically provable capacity-
achieving error correcting codes with near-linear time encod-
ing and decoding complexities. However, the result holds
for very long code length in conjunction with successive
cancelation (SC) decoder [1]. To improve the performance
of polar codes in the finite length regime, various decoders
have been proposed in the literature. Based on successive
cancellation (SC) decoder, authors of [2] introduced a suc-
cessive cancelation list (SCL) decoder. The SCL decoder
offers the performance close to that of maximum-likelihood
(ML) decoder. Furthermore, it was shown in [3] that, us-
ing cyclic redundancy check (CRC), polar codes with SCL
decoder even outperform more than some turbo codes. How-
ever, due to the serial processing nature of SC decoder, all
its variants would suffer a low decoding throughput and high
latency.

In contrast, belief propagation (BP) decoder proposed
in [1] has the intrinsic advantage of parallel processing
which is attractive for low-latency applications. Moreover,
BP decoder, unlike SC decoder and its variants, provides
soft-outputs that are necessary for iterative detectors for
inter-symbol interference or multiple-antenna channels. Re-
cenly, to reduce the complexity of BP decoder, authors of
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[4], [5] proposed approximate polar BP decoder using min-
sum (MS) algorithm and normalized MS (also known as
scaled MS) algorithm, respectively. In this paper, we pro-
pose three effective approximate polar BP decoders using
Maclaurin’s series [6], piecewise linear function [7], step-
wise linear function. To the best of our knowledge, this is
the first work that applies these approximation techniques to
polar decoder.

2. Preliminaries

The BP decoder for polar codes can be represented by a factor
graph [1]. Given the code length n = 2™ and information
length &, the binary source bits consists of k information bits
and n — k frozen bits. The codeword x with code rate k/n
can be obtained as follows:

x=u-G,

where G, = F®™ is the generator matrix, F®" is the m-th
Kronecker power of F = [1 9], and m = log, n.

A factor graph of polar code of length n = 2™ consists
of m stages and (m + 1)n nodes. Figure 1 shows a factor
graph representation of polar code of length n = 2° = 8.
The message passing on a unit graph is shown in Figure 2.
The messages are iteratively updated as follows:
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Fig.1  Factor graph representation of polar code with code length 8.
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Fig.2  Message passing in a unit graph.
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where L! . and R’ ; represent logarithmic likelihood ratio
(LLR)- based rlght to left and left-to-right propagation mes-
sages for the i-th bit in the j-th stage during the 7-th iteration,
respectively, and f(x, y) = log ( letf:;;)

By Jacobian approach, the f(x, y) can be rewritten as
follows [8]:

J(x, y) = sgn(x) - sgn(y) - min(|x|, [y|)
+g(x+yl) —g(x -y, ey

where g(z) = log(1 + e7%).
The MS decoder, normalized MS decoder, and offset
MS decoder respectively approximate (1) as follows [9]:

fms(x, y) = sgn(x) - sgn(y) - min(|x|, [y]),
Sfams(x, y) = sgn(x) - sgn(y) - min(|x|, |y])/a,
Sfoms(x, y) = sgn(x) - sgn(y) - max (0, min(|x|, |y|) — B),

where @ > 1 is the normalized factor and 8 > 0 is the
offset factor. The values of the factors should be optimized
according to the code parameters and channel condition.

3. Reduced-Complexity Belief Propagation Decoding
for Polar Codes

3.1 Approximate Belief Propagation Using Maclaurin’s
Series

In general, the Maclaurin’s series expansion consists of in-
finite number of terms. For g(z) in (1), the expansion
is g(z) = 2o %Z". Therefore, we can approxi-
mate the function g(z) as a summation of a finite num-
ber of terms. For example, the 4th order approximation is
g(z) ~ log(2) — %Z ézz - 1921 Figure 3 shows the val-
ues of non-approximate function and 1st, 2nd, 4th, 6th order
approximate functions of g(z). In the figure, the differences
between the original function and the approximate functions
using Maclaurin’s series increase with increasing z. More-
over, since both z and ¢g(z) always have non-negative values
in (1), we propose an approximate function for polar BP
decoder as follows:

log(2) — z/2 +z%2/8 —z*/192 if 0 < z<2.6,
g(z) = .
0 otherwise.

We note that the Oth order approximation is the same
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Fig.3 The values of non-approximate function and 1st, 2nd, 4th, 6th
order approximate functions of g(z) using Maclaurin’s series.

with MS decoding and a similar approach for low density
parity check (LDPC) codes using the 1st order approximation
is proposed in [10].

3.2 Approximate Belief Propagation Using Piecewise Lin-
ear Function

Based on [7], we can design some functions which offer al-
most perfect match to the original function using only linear
functions. From this observation, we propose an approxi-
mate polar BP decoder using the following piecewise linear
approximate function:

0.68-0.38z if 0<z<1,
049-0.19z if 1<z<2,
0.21 - 0.05z if 2 <z <4,
0 otherwise.

g(z) =

As a special case of piecewise linear approximation,
we can also consider an approximation using constant func-
tions. This is also known as lookup table approximation.
We propose another approximate polar BP decoder using
the following stepwise linear approximate function:

() = 06 if0<z<2,
9= 0 otherwise.

Figure 4 shows that the piecewise linear approxi-
mate function provides almost perfect match to the non-
approximate function. In the next section, we will show
that, interestingly, a polar decoder using the stepwise linear
approximate function achieve the performance very close to
that of the original BP decoder in spite of the difference
between the stepwise linear approximate function and the
original function.

We note that similar approximation approaches for
LDPC codes are proposed in [11]-[13].

4. Simulation Results

We present simulation results comparing the performance of
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Fig.4  The values of non-approximate function, stepwise linear approxi-
mate function, and piecewise linear approximate function of g(z).

the proposed approximate polar BP decoders using Maclau-
rin’s series, piecewise linear function, and stepwise linear
function to that of the existing polar BP decoders; original
BP decoder (also known as sum-product decoder) [1], MS
decoder [4], and normalized MS decoder [5]. In the remain-
ing of the paper, we denote them mMS, pMS, sMS, SP, MS,
and nMS, respectively.

For the simulation, we use polar codes with code length
512, 1024 and coderate 1/2, 1/3, 2/3. The maximum number
of iterations for all the decoders is set to 200. In particular,
for nMS, we use @ = 1.07 which is an optimized value
for a polar code with code length 512 and code rate 1/2.
Figures 5-10 show the frame error rate (FER) versus Ep /Ny
of various polar BP decoders using binary phase shift keying
(BPSK) modulation over an additive white Gaussian noise
(AWGN) channel.

We first give the simulation results of polar codes with
code length 512 in Figs. 5-7. Figure 5 shows the result with
code rate 1/2. In the figure, the BP decoders have almost the
same performance except for MS. In particular, MS suffers
the performance degradation in low Ej /Ny region. Figure 6
shows the result with code rate 1/3. We can see that the per-
formance of nMS and sMS is slightly inferior to that of other
BP decoders except for MS. Figure 7 shows the result with
code rate 2/3. In this case, nMS has the worst performance
in high Ejp /Ny region. On the other hand, the proposed de-
coders, mMS, pMS, and sMS, have the performance very
close to that of SP.

Now, we give the simulation results of polar codes with
code length 1024 in Figs. 8-10. Figure 8 shows the result
with code rate 1/2. In low Ep /Ny region, MS has the worst
performance and, in high Ej, /Ny region, nMS has the worst
performance even though it was optimized for code rate
1/2. From the result, we can expect that the optimization
of a for nMS is affected by the code length as well as the
code rate. Figure 9 shows the result with code rate 1/3.
Similar to the case of code length 512, all the BP decoders
except for MS have almost the same performance. Finally,
Fig. 10 shows the result with code rate 2/3. In this case,
nMS performs significantly worse. Although MS is the most
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Fig.5 FERvs. Ej, /Ny performance curve for various polar BP decoders
with code length 512 and code rate 1/2.
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Fig.6  FER vs. Ej, /Ny performance curve for various polar BP decoders
with code length 512 and code rate 1/3.
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Fig.7 FERvs. Ej, /Ny performance curve for various polar BP decoders

with code length 512 and code rate 2/3.

approximate version, it has better performance than nMS
in middle and high Ej; /Ny ranges. Comparing with the
case of code length 512, the performance gap between our
approximation schemes and existing approximation schemes
is also increased.
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Fig.8 FER vs. Ej, /Ny performance curve for various polar BP decoders
with code length 1024 and code rate 1/2.
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5. Conclusions

In this paper, we proposed three effective approximate BP
decoders for polar codes using Maclaurin’s series, piecewise
linear function, and stepwise linear function. Simulation re-
sults show that the proposed decoders have the better perfor-
mance than that of existing approximate polar BP decoders.
Moreover, the proposed decoders achieve such performance
without any optimization process according to the code pa-
rameters and channel condition. Therefore, it is anticipated
that our approximate polar BP decoders could be a good al-
ternative to existing approximate polar BP decoders. As a
future work, one may consider a polar decoder modifying or
combining some of the proposed approximation schemes.
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