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Block-Punctured Binary Simplex Codes for Local and Parallel
Repair in Distributed Storage Systems∗∗

Jung-Hyun KIM†∗a), Min Kyu SONG††b), Nonmembers, and Hong-Yeop SONG††c), Member

SUMMARY In this paper, we investigate how to obtain binary locally
repairable codes (LRCs) with good locality and availability from binary
Simplex codes. We first propose a Combination code having the generator
matrix with all the columns of positive weights less than or equal to a given
value. Such a code can be also obtained by puncturing all the columns of
weights larger than a given value from a binary Simplex Code. We call
by block-puncturing such puncturing method. Furthermore, we suggest a
heuristic puncturing method, called subblock-puncturing, that punctures a
few more columns of the largest weight from the Combination code. We
determine the minimum distance, locality, availability, joint information
locality, joint information availability of Combination codes in closed-form.
We also demonstrate the optimality of the proposed codes with certain
choices of parameters in terms of some well-known bounds.
key words: distributed storage systems, locally repairable codes, locality,
availability, simplex codes

1. Introduction

Recently, due to the dramatically boost in data, distributed
storage systems are becoming progressively more important.
To guarantee the reliability against storage node failures, var-
ious coding techniques have been applied to the systems.
The simplest and most commonly used way is replication,
where every node is replicated several times. Such systems
are very easy to implement, but severely inefficient in stor-
age space, equipments, and devices. In contrast, maximum
distance separable (MDS) codes [1] have minimal storage
overhead for a given reliability requirement, but suffer from
inefficiency in the repair process.

Motivated by the desire to reduce repair cost of codes
for distributed storage systems, an interesting notion, local-
ity, was introduced in [2]. More precisely, if a symbol of a
code C can be expressed as a function of at most r1 other
symbols in C, the symbol is said to have locality r1. It is said
that a code C has all symbol locality r1 if every symbol in C
has the locality at most r1. For a systematic code, it is said
that the code has information symbol locality r1 if its every
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information symbol has the locality atmost r1. After that, the
authors of [3] proposed a generalized notion of locality for
multiple node failures, (rl, l)-cooperative locality: any set
of l symbols are expressed as functions of at most rl other
symbols. In this paper, we call this l-locality rl briefly. The
authors in [4]–[6] suggested joint locality and joint informa-
tion locality which consider multiple values of l instead of a
single value of l. We call codes having the properties locally
repairable codes (LRCs) [7]. Some bounds for LRCs have
been reported in [2], [6], [8], [9], and some constructions of
LRCs have also been proposed in [4], [5], [7], [10]–[12].

In addition to the locality, the availability was intro-
duced in [13] as another important property of LRCs. A
symbol of a code is said to have (r1, t1)-availability if it can
be recovered from any single set of t1 disjoint repair sets of
other symbols, each set of size at most r1. We refer a sys-
tematic code to an LRC with (r1, t1)i-availability if its every
information symbol has the locality at most r and availability
at least t1 and a code to an LRC with (r1, t1)a-availability if
its every symbol has the locality at most r and availability
at least t1. An LRC with (r1, t1)a-availability also tolerates
multiple node failures up to t1 failures in any local repair
process. Moreover, such LRCs ensure parallel reads for each
symbol, which is appealing in distributed storage systems
containing so-called hot data that is frequently and simul-
taneously accessed by many users. Some bounds for LRCs
with availability have been reported in [13]–[15], and some
constructions of such LRCs have also been proposed in [13]–
[20]. After that, the authors of [21] extended the availability
for one symbol into the availability for multiple symbols,
and defined joint availability.

In this paper, we investigate how to construct newbinary
LRCs with good locality and availability from binary Sim-
plex codes. Binary Simplex codes (dual of Hamming codes
or punctured Hadamard codes) [1] are well-known LRCs
attaining existing upper bounds [9], [15] on the code dimen-
sion and minimum distance which take into account the field
size, locality, and availability. An [n = 2k − 1, k, d = 2k−1]2
Simplex code has joint locality (r1, r2)a = (2, 3) [5] and
(2, d −1)a-availability [15]. Even though the Simplex codes
have good locality and availability properties, they have ex-
tremely low code rate k

2k−1 . To obtain high rate codeswithout
destroying the minimum distance, locality, and availability
properties of the Simplex codes as possible, we propose a
new construction of LRCs by puncturing the Simplex codes.
We consider two types of the puncturing, “block-puncturing”
and “subblock-puncturing”, as follows:
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Block-puncturing: We consider a puncturing method
which drops all the columns having weights larger than a
given value in the generator matrix. We note that the authors
in [22] also considered a similar puncturing method, called
spherically puncturing, to increase the minimum distance of
the first order Reed-Muller codes andHadamard codes. They
derived the minimum distance of two families of single-layer
spherically punctured codes in closed-form. However, our
block-punctured binary Simplex codes are a special case of
multilayer spherically punctured Hadamard codes. Thus, all
the results of block-punctured binary Simplex codes are new.

Subblock-puncturing: We also consider a heuristic
puncturing method which drops few more columns of the
largest weight after block-puncturing. To minimize the loss
of the minimum distance, locality, and availability after the
puncturing, we propose a heuristic algorithm. We confirmed
that the algorithm works well by a computer simulation.

In the remaining of this paper, we call by Combina-
tion codes block-punctured Simplex codes, and by punc-
tured Combination codes the obtained codes by subblock-
puncturing Combination codes. We determine the minimum
distance, joint locality (r1, r2)a, joint information locality,
availability, and joint information availability of Combina-
tion codes in closed-form. We also discuss the optimality of
the Combination codes and punctured Combination codes in
terms of some well-known upper bounds on the code dimen-
sion, minimum distance, and code rate. The result shows
that the proposed codes with certain choices of parameters
attain bounds on the code dimension and minimum distance
which take into account the field size, locality, and availabil-
ity. Moreover, our codes have the best code rate among the
existing LRCs with the same availability.

The rest of this paper is organized as follows. In Sect. 2,
we propose new binary LRCs having good locality and avail-
ability properties. We provide the minimum distance, local-
ity, and availability properties of the proposed codes. In
Sect. 3, we show the optimality of the proposed codes in
terms of well-known bounds on the code dimension, min-
imum distance, and code rate. In Sect. 4, we conclude the
paper.

2. Block-Punctured Binary Simplex Codes

We start with the definition of the proposed codes, Combi-
nation (k, w) codes. We use the notation [n, k, d]q to refer
to the parameters of a q-ary linear LRC of the code length
n, dimension k, and minimum distance d. For a positive
integer n, we denote by [n] the set of integers {1, 2, . . . , n}.

Definition 1 Let two integers k and w satisfy k > 3 and 2 6
w 6 k. For i ∈ [w], let Gi be the k ×

(
k
i

)
matrix consisting of

all the columns of weight i. Let G = [G1 |G2 | · · · |Gw]. Then,
the binary linear code C generated by G has length

∑w
i=1

(
k
i

)
and dimension k. We call C a Combination (k, w) code.

In the remaining of this paper, we will fix G the gen-
erator matrix defined in Definition 1 for Combination (k, w)

codes. We do not consider the case of k 6 2 and the case of
w = 1, since they are trivial. We note that the Combination
(k, 2) code and a Complete graph code [4] are permutation
equivalent, and that the Combination (k, k) code and a Sim-
plex code [1] are permutation equivalent. For w < k, the
Combination (k, w) code is the result of block-puncturing of
the Simplex code. That is, G can be also obtained by deleting
all the columns of weight larger than w from the generator
matrix of the Simplex code. Later, we will further consider
a heuristic puncturing method, called subblock-puncturing,
that punctures a few more columns of weight w.

Now, using the following Lemma 1 and Lemma 2, we
derive the minimum distance of Combination (k, w) codes
in Theorem 1.

Lemma 1 Let C be a Combination (k, w) code with its gen-
erator matrix G. For s = 1, 2, . . . , k, a codeword obtained
by adding any s rows of G has weight W (s), which is given
by the following:

W (s) =
w∑
i=1

∑
16 j6i
j odd

(
s
j

) (
k − s
i − j

)
. (1)

Proof For every i ∈ [w], let Mi be a s-by-
(
k
i

)
submatrix

of Gi corresponding to the selected s rows. Then, W (s) is
the sum of the numbers of odd weight columns in Mi for all
i ∈ [w]. Therefore, we obtain the above equation.

Lemma 2 Let C be a Combination (k, w) code with its gen-
erator matrix G. For s = 2, 3, . . . , k, choose any s rows in G.
We denote by x any one of them, and consider a submatrix
M ′ consisting of the remaining s − 1 rows. We denote by
W1(s − 1) the number of odd weight columns in M ′ out of
the columns corresponding to 1’s positions of x. We denote
by W0(s− 1), similarly, those corresponding to 0’s positions
of x. Then, W1(s − 1) 6 W0(s − 1).

Proof Since each row of G is permutation equivalent, we
can assume that any s rows are selected. It is also the same
with x. Then, W0(s − 1) and W1(s − 1) can be written as
follows:

W0(s − 1) =
w∑
i=1

∑
16 j6i
j odd

(
s − 1

j

) (
(k − 1) − (s − 1)

i − j

)
,

W1(s − 1) =
w∑
i=2

∑
16 j6i−1
j odd

(
s − 1

j

) (
(k − 1) − (s − 1)

(i − 1) − j

)
.

Therefore, we finally obtain W1(s − 1) 6 W0(s − 1).

Theorem 1 Let C be a Combination (k, w) code. Then, the
minimum distance d of C is

d =
w∑
i=1

(
k − 1
i − 1

)
.
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Proof Without loss of generality, consider the top s rows in
the generator matrix G of C. We can always suppose that the
first row of G is of the form (1, . . . , 1, 0, . . . , 0) with column
permutation. Then, W (s) in Lemma 1 can be written as
follows:

W (s) =



W (1), for s = 1,
W (1) −W1(s − 1) +W0(s − 1), for 2 6 s 6 k,

whereW1(s−1) andW0(s−1) are the numbers of odd weight
columns defined in Lemma 2. Since W1(s − 1) 6 W0(s − 1)
by Lemma 2, we have W (1) 6 W (s). Finally, using the
result of Lemma 1, the minimum distance d is

d = min
s∈[k]

W (s) = W (1) =
w∑
i=1

(
k − 1
i − 1

)
.

Theorem 2 Let C be a Combination (k, w) code. Then, C
has joint locality (r1, r2)a = (2, 3).

Proof Consider the generator matrix G of C. For r1 = 2, we
have to show that an erased column of G can be expressed
as a linear combination of at most two other columns. For
r2 = 3, we have to show that two erased columns can be
expressed as a linear combination of at most three other
columns.

1. For r1 = 2, let gE1 be the erased column in G and E1 be
the set of non-zero row indices of gE1 . Then, as shown
in Fig. 1, there always exist a column gR1 of weight 1,
R1 , E1, and a corresponding column gR2 = gE1 +gR1 .

2. For r2 = 3, let gE1 and gE2 be the two erased columns,
and E1 and E2 be the sets of non-zero row indices of
gE1 and gE2 , respectively. Without loss of generality,
assume that |E1 | > |E2 |. Then, as shown in Fig. 2, there
always exists a column gR1 and corresponding columns
gR2 = gE1 + gR1 and gR3 = gE2 + gR1 .

Even though a bound of `-locality for the Simplex codes
is introduced in [3], it is not easy to find the exact value
of `-locality for Combination (k, w) codes. In this paper,
as a first step, we provide the joint information locality of
Combination (k, w) codes as the following.

Theorem 3 Let C be a Combination (k, w) code. Then, C
has joint information locality

r` =



`, for `, w > 3,
` + 1, otherwise.

Proof For ` = 1 and 2, we have r` = ` + 1 from Theorem 2.
For ` > 3, we consider two cases: (1) w = 2. (2) w > 3.
Consider the generator matrix G of C. Let gE1, gE2, . . . , gE`
be the erased columns.

Case (1): For ` > 3, w = 2, the minimum distance d is
k, and thus ` 6 k −1. Then, we can always choose a column

Fig. 1 Two cases for r1 = 2.

Fig. 2 Five cases for r2 = 3.

gA of weight 1 which is not erased. Using the column, we
can reconstruct the erased columns from the following ` + 1
other columns.

gR1 = gA, gR2 = gA + gE1,

gR3 = gA + gE2, . . . , gR`+1 = gA + gE` .

Case (2): For `, w > 3, we can always reconstruct the
erased columns from the following ` other columns.

gR1 = gE1 + gE2 + gE3, gR2 = gE1 + gE2,

gR3 = gE1 + gE3, . . . , gR` = gE1 + gE` .

Now, using the following Lemma 3 and Lemma 4, we
derive the availability of Combination (k, w) codes in The-
orem 4.

Lemma 3 Let C be a Combination (k, w) code with its gen-
erator matrix G. Then, the availability T (i) of a symbol
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corresponding to a column of weight i in G is

T (i) =
1
2

i∑
u=0

(
i
u

) min(w−u,w−(i−u))∑
v=0

(
k − i
v

)
− 1. (2)

Proof Recall that 1-locality r1 is 2 for Combination (k, w)
codes by Theorem 2. The availability of a symbol is, there-
fore, the number of disjoint sets of two columns to repair the
corresponding column in G. More precisely, assume that A
is the set of non-zero row indices for an erased column of
weight i. Then, the availability of the symbol corresponding
to A is the number of disjoint choices for two distinct sets of
integers, B and C, such that A = (B ∪ C) − (B ∩ C) where
|A| = i, and 0 < |C | 6 |B | 6 w. There are three cases for
the choice:

1. If B ∩ C = C, the number of choices is

w−i∑
v=1

(
k − i
v

)
.

2. If B ∩ C = ∅, the number of choices is

1
2

i−1∑
u=1

(
i
u

)
.

3. Otherwise, the number of choices is

1
2

i−1∑
u=1

(
i
u

) min(w−u,w−(i−u))∑
v=1

(
k − i
v

)
.

The sum of the above three gives (2).

Lemma 4 Let C be a Combination (k, w) code with its gen-
erator matrix G. For a possible positive integers i, let T (i)
be the availability of a symbol corresponding to the column
of weight i in G. Then, T (·) satisfies the following:

T (2 j − 1) = T (2 j) > T (2 j + 1), (3)

i.e. T (1) = T (2) > T (3) = T (4) > T (5) = T (6) · · ·T (w).

Proof Observe that there are
(
k
i

)
columns of weight i in

G, and all the
(
k
i

)
symbols corresponding to these columns

have the same availability, which is denoted by T (i). Now,
we rewrite (2) in Lemma 2 as follows

T (2 j − 1) =
2j−1∑
u=j

(
2 j − 1

u

) w−u∑
v=0

(
k − (2 j − 1)

v

)
− 1,

T (2 j) =
2j∑
u=j

(
2 j
u

) w−u∑
v=0

(
k − 2 j
v

)
−

1
2

(
2 j
j

) w−j∑
v=0

(
k − 2 j
v

)
− 1.

This gives T (2 j − 1) = T (2 j).
For the inequality in (3), we rewrite (2) as follows

T (2 j) =
2j∑

u=j+1

(
2 j
u

) w−u∑
v=0

(
k − 2 j
v

)
+

1
2

(
2 j
j

) w−j∑
v=0

(
k − 2 j
v

)
− 1,

T (2 j + 1) =
2j+1∑
u=j+1

(
2 j + 1

u

) w−u∑
v=0

(
k − (2 j + 1)

v

)
− 1.

Now, it is easy to check that T (2 j) − T (2 j + 1) > 0.

Theorem 4 Let C be a Combination (k, w) code. Then, the
availability t1 of C is

t1 =
1
2

w∑
u=0

(
w

u

) min(w−u,u)∑
v=0

(
k − w
v

)
− 1.

In particular, t1 = d−1when w = 2, k−1 or k, and t1 = d−2
when w = k − 2 > 2.

Proof By Lemma 3 and Lemma 4, the availability t1 of C
becomes

t1 = min
i∈[w]

T (i) = T (w) =
1
2

w∑
u=0

(
w

u

) min(w−u,u)∑
v=0

(
k − w
v

)
− 1.

We note that we can obtain the availabilities of a Com-
plete graph code [4] and a binary Simplex code [1] using
a Combination (k, 2) code and a Combination (k, k) code,
respectively. The availability of a Complete graph code is
also obtained from its graph representation [4], [5], and that
of a binary Simplex code is also obtained from its one-step
majority-logic decoding structure [15], [23].

Based on the proof of Theorem 3, we provide the joint
information availability of Combination (k, w) codes.

Theorem 5 Let C be a Combination (k, w) code. Then, C
has joint information availability

(r`, t` )i =



(` + 1,
∑min(w−1,k−`)
v=1

(
k−`
v

)
), for ` = 1, 2,

(` + 1, k − `), for ` > 3, w = 2,
(`,min(`, w) − 2), otherwise.

Proof By Theorem 3, C has joint information locality
(r1, r2)i = (2, 3). Consider the generator matrix G of C.
To obtain the value of t1, let gE1 be the erased column.
Choose a column gA of weight a < w, A , E1. Then, we can
reconstruct the erased column from the following two other
columns.

gR1 = gA, gR2 = gA + gE1 .

When a is fixed,
(
k−1
a

)
disjoint repairs sets exist, and there

are w − 1 choices for a. Therefore, t1 =
∑w−1
v=1

(
k−1
v

)
.

Now, to obtain the value of t2, let gE1 and gE2 be the
erased columns. Choose a column gA of weight a < w,
A , E1, E2. Then, we can reconstruct the erased columns
from the following three other columns.

gR1 = gA, gR2 = gA + gE1, gR3 = gA + gE2 .

When a is fixed,
(
k−2
a

)
disjoint repairs sets exist. When
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w < k, there are w − 1 choices for a and, when w = k, there
are k − 2 choices for a. Therefore, t2 =

∑min(w−1,k−2)
v=1

(
k−2
v

)
.

Now, consider the case of ` > 3. Since w > 2 by
the definition, we consider two cases: (1) ` > 3, w = 2.
(2) `, w > 3. Consider the generator matrix G of C. Let
gE1, gE2, . . . , gE` be the erased columns.

Case (1): For ` > 3, w = 2, the minimum distance d is
k, and thus ` 6 k −1. Then, we can always choose a column
gA of weight 1 which is not erased. Using the column, we
can reconstruct the erased columns from the following ` + 1
other columns.

gR1 = gA, gR2 = gA + gE1,

gR3 = gA + gE2, . . . , gR`+1 = gA + gE` .

For a fixed column gA, there is only one disjoint repair set.
The number of choices of such a column gA is k − `, and the
repair sets are disjoint each other.

Case (2): For `, w > 3, we can always reconstruct the
erased columns from the following ` other columns. Here, i
is a positive integer, 3 6 i 6 min(`, w).

gR1 =

i∑
u=1

gEu , gR2 =
∑

16u6i
u,1

gEu , . . . , gRi =
∑

16u6i
u,i−1

gEu ,

gRi+1 =

i−2∑
u=1

gEu + gEi+1, . . . , gR` =

i−2∑
u=1

gEu + gE` .

For a fixed value i, there is only one disjoint repair set. For
all the possible i, the repair sets are disjoint each other.

In addition, we propose another puncturing method,
called subblock-puncturing, which deletes a few more
columns of weight w from the generator matrix of a Com-
bination (k, w) code. Let p be the number of punctured
columns, called puncturing length. If p becomes

(
k
w

)
, the

punctured code is the same with a Combination (k, w − 1)
code. Thus, we only consider 1 6 p 6

(
k
w

)
− 1.

Consider the generator matrix G = [G1 |G2 | · · · |Gw] of
a Combination (k, w) code. To obtain a punctured Combi-
nation (k, w) code by the subblock-puncturing, we use the
following generator matrix construction algorithm.

Algorithm 1Construction of the generator matrix of a punc-
tured Combination (k, w) code by the subblock-puncturing
1: Set y =

(
k
w

)
.

2: for every column set of size p in Gw do
3: Make a k × p matrix Φ.
4: Calculate the difference x betweenmaximumandminimumweights

of rows in Φ.
5: if y > x then
6: Set y = x and Ψ = Φ.
7: end if
8: end for
9: Delete columns of G which are the same with those of Ψ†.

†We note that Ψ is always defined since x is smaller than
(
k
w

)
.

Using the subblock-puncturing, we can obtain some
optimal codes in terms of the following bounds. For LRCs
with (r1, t1)i-availability, an upper bound on the minimum
distance was presented in [13] under the following condition.
Let C be an [n, k, d]q LRC. Every information symbol of C
has t1 disjoint repair sets, each set of size at most r1, such
that any repair set contains only one parity symbol. Then,
the minimum distance d of C is bounded by

d 6 n − k −
⌈ kt1

r1

⌉
+ t1 + 1. (4)

Additionally, we note that the bound (4) implies

k
n
6

r1
r1 + t1

. (5)

Now, consider a Combination (k, 2) code and puncture
the code usingAlgorithm 1. For a positive integer τ such that
2|kτ, when the puncturing length p = k

2 (k−τ−1), we obtain
an [n = k + kτ

2 , k, d]2 punctured Combination (k, 2) code.
Let C be the punctured code. Then, it is easy to see that C
has the (2, τ)a-availability and minimum distance d = τ+1,
and thus, C is optimal in terms of the bounds (4) and (5).
In particular, for τ = k − 1, the punctured code becomes a
Complete graph code [4] and, for τ = k − k

γ where γ is a
positive integer such that 2 6 γ 6 k and γ |k, it becomes a
Complete multipartite graph code [4]. Moreover, for τ = 1,
we have optimal binary LRCs with the code rate 2/3 and, for
τ = 2, we have optimal binary LRCs with the code rate 1/2.

3. Some Well-Known Upper Bounds and Optimality of
the Proposed Codes

In this section, we review two bounds in [21] which take
into account the field size, locality, and availability. We
also review a code rate bound in [24] without the field size
constraint. With respect to these bounds, we check the op-
timality of the proposed Combination codes and punctured
Combination codes by the subblock-puncturing with certain
choices of parameters.

The authors in [21] proved that, for an (n, k, d)q code C
which has joint information availability {(rl, tl) : l ∈ [d−1]},
the code dimension k satisfies

k 6 min
z∈Z+

l={lj ∈[d−1],16 j6z }
y={yj ∈[tl j ],16 j6z }

A(l,y)<k

[
A(l, y) + k (q)

opt (n − B(l, y), d)
]
,

(6)

and the minimum distance d satisfies

d 6 min
z∈Z+

l={lj ∈[d−1],16 j6z }
y={yj ∈[tl j ],16 j6z }

A(l,y)<k

[
d (q)
opt (n − B(l, y), k − A(l, y))

]
,

(7)
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Table 1 Optimality of combination codes and punctured combination
codes with regard to well-known alphabet-dependent upper bounds.

[n, k, d]2 w p (r1, r2)i (t1, t2)i (r1, r2)a (t1, t2)a ∆k ∆d

[6, 3, 3] 2 0 (2, 3) (2, 1) (2, 3) (2, 1) 0 0
[7, 3, 4] 3 0 (2, 3) (3, 1) (2, 3) (3, 1) 0 0
[8, 4, 3] 2 2 (2, 3) (2, 1) (2, 4) (1, 1) 0 0
[9, 4, 3] 2 1 (2, 3) (2, 2) (2, 3) (2, 1) 0 1
[10, 4, 4] 2 0 (2, 3) (3, 2) (2, 3) (3, 1) 0 0
[11, 4, 4] 3 3 (2, 3) (3, 2) (2, 3) (3, 2) 1 1
[12, 4, 5] 3 2 (2, 3) (4, 2) (2, 3) (4, 2) 0 1
[13, 4, 6] 3 1 (2, 3) (5, 3) (2, 3) (5, 2) 0 0
[14, 4, 7] 3 0 (2, 3) (6, 3) (2, 3) (6, 3) 0 0
[15, 4, 8] 4 0 (2, 3) (7, 3) (2, 3) (7, 3) 0 0
[10, 5, 3] 2 5 (2, 3) (2, 1) (2, 4) (1, 1) 0 0
[11, 5, 3] 2 4 (2, 3) (2, 1) (2, 4) (1, 1) 1 1
[12, 5, 3] 2 3 (2, 3) (2, 1) (2, 4) (1, 1) 1 1
[13, 5, 4] 2 2 (2, 3) (3, 2) (2, 4) (2, 1) 1 1
[14, 5, 4] 2 1 (2, 3) (3, 3) (2, 3) (3, 1) 2 2
[15, 5, 5] 2 0 (2, 3) (4, 3) (2, 3) (4, 1) 1 1
[16, 5, 5] 3 9 (2, 3) (4, 3) (2, 4) (3, 1) 1 2
[17, 5, 6] 3 8 (2, 3) (5, 3) (2, 3) (3, 1) 1 2
[18, 5, 6] 3 7 (2, 3) (5, 3) (2, 3) (3, 2) 2 2
[19, 5, 7] 3 6 (2, 3) (6, 4) (2, 3) (4, 2) 1 1
[20, 5, 8] 3 5 (2, 3) (7, 4) (2, 3) (5, 2) 1 1
[21, 5, 8] 3 4 (2, 3) (7, 4) (2, 3) (6, 3) 2 2
[22, 5, 9] 3 3 (2, 3) (8, 4) (2, 3) (6, 3) 1 1
[23, 5, 9] 3 2 (2, 3) (8, 4) (2, 3) (7, 4) 1 2
[24, 5, 10] 3 1 (2, 3) (9, 5) (2, 3) (8, 4) 1 2
[25, 5, 11] 3 0 (2, 3) (10, 6) (2, 3) (9, 5) 1 1
[26, 5, 11] 4 4 (2, 3) (10, 6) (2, 3) (10, 5) 1 1
[27, 5, 12] 4 3 (2, 3) (11, 6) (2, 3) (11, 5) 1 1
[28, 5, 13] 4 2 (2, 3) (12, 6) (2, 3) (12, 6) 0 1
[29, 5, 14] 4 1 (2, 3) (13, 6) (2, 3) (13, 6) 0 0
[30, 5, 15] 4 0 (2, 3) (14, 7) (2, 3) (14, 7) 0 0
[31, 5, 16] 5 0 (2, 3) (15, 7) (2, 3) (15, 7) 0 0

where

A(l, y) =
z∑
j=1

((rlj − 1) yj + 1), B(l, y) =
z∑
j=1

(rlj yj + l j ).

We note that k (q)
opt (n

′, d ′) is the largest possible dimension of
a q-ary linear code of length n′ and minimum distance d ′,
and d (q)

opt (n
′, k ′) is the largest possible minimum distance of

a q-ary linear code of length n′ and dimension k ′.
In Table 1, we demonstrate the optimality of the pro-

posed codes with some parameters in terms of the above
bounds (6) and (7). To obtain the locality and availability
properties of punctured Combination codes, we carried out
a computer simulation. We also use the online table [25]
for k (2)

opt (·, ·) and d (2)
opt (·, ·) in the bounds. The ∆k represents

the difference between the code dimension of the proposed
code and the optimal value in terms of the bound (6). The
∆d represents the difference between the minimum distance
of the proposed code and the optimal value in terms of the
bound (7). We note that the codes with parameters [7, 3, 4]2,
[15, 4, 8]2, and [31, 5, 16]2 are binary Simplex codes.

In [24], for [n, k, d]q code with (r1, t1)a-availability, an

Fig. 3 Comparison of the code rates for r1 = 2, 1 6 t1 6 15: For t1 > 2,
all the proposed codes have joint locality (r1, r2)a = (2, 3).

upper bound on the code rate is given by

k
n
6

1∏t1
j=1(1 + 1

j ·r1
)
. (8)

Unfortunately, for t1 > 2, it is not known whether the bound
(8) is achievable. A construction of binary linear codes
achieving any given (r1, t1)-availability was introduced in
[16]. To the best of our knowledge, in terms of the code
rate, this is the best known construction of codes achieving
arbitrary (r1, t1)-availability. Since r1 > 2 except for the
repetition codes, we are more interested in (2, t1)-availability
case. There are also some existing codes achieving this
availability: the codes from [16], Direct product codes [14],
[24], and Simplex codes [1] (only for those values of t1 =
2k−1 − 1).

In Fig. 3, we compare the code rates of the above men-
tioned codes and the proposed codes, both Combination
codes and punctured Combination codes. Figure 3 shows
the code rates of various codes achieving (2, t1)-availability
versus the value t1 from 1 to 15, together with the bound
(8). From the figure, we confirm that the proposed codes
have higher code rates than the codes from [16] (best known
codes) as well as Direct product codes [14], [24] when the
same (2, t1)-availability is maintained. In Fig. 4 and Fig. 5,
we also compare the minimum distances and code lengths of
the three families of the codes, the proposed codes, Simplex
codes, and codes in [16], respectively. From these results,
we confirmed that the proposed codes are attractive not only
for code rate but also for other code parameters such as the
minimum distance and code length.

We also compare our codes to some of previously pro-
posed LRCs in Table 2. The table summarizes parameters
of existing [n, k, d]q codes and locality r1 and availability t1
properties of them. We restrict our attention to binary LRCs
(q = 2) with locality r1 = 2 because of their low encoding,
decoding, and repair complexity. All of our codes have such
property and their paremeters are presented in Table 1 and
Figs. 3–5. We can check that almost existing LRCs have the
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Table 2 Parameters of existing LRCs and properties of them
q n k d r1 t1 R = k/n Ref.

q (prime power) > n r + 1 |n r |k n − k − k
r + 2 (r1)a = r 1 6 r

r+1 [11]
q (prime power) > 2 N + t kr r |k n − k − kt

r + t + 1 (r1)i = r t 6 r
r+t [13]

q (prime power) > 2 N + N
r + (t + 1) k

r r |k n − k − kt
r + t + 1 (r1)a = r t 6 r

r+t [13]
2 2m−1l +m − 1 (2m−1 − 1)l 3 (r1)i = 2m−1 − 1 1 6 r

r+1 [15]
2 (2m − 1 −m)l +m + 1 (2m − 2 −m)l 4 (r1)i = 2m − 2 −m 1 6 r

r+1 [15]
2 (2m −m)l +m + 1 (2m − 1 −m)l 4 (r1)i = 2m − 1 −m 1 6 r

r+1 [15]
2 8l + 12 (l 6 15) 7l 5 (r1)i = 7 1 6 r

r+1 [15]
2 22l + 16 (l 6 63) 21l 5 (r1)i = 21 1 6 r

r+1 [15]
2 (2m − 1 −m)l (2m − 2 −m)l − 1 −m 4 (r1)a = 2m − 2 −m 1 6 r

r+1 [15]
2 (2m −m)l (2m − 1 −m)l − 1 −m 4 (r1)a = 2m − 1 −m 1 6 r

r+1 [15]
2 (2m − 1)l (2m − 2)l −m

∑µ
i=2 ( d µi−1 − 1e) 2µ (r1)a = 2m − 2 1 6 r

r+1 [15]
2 2ml (2m − 1)l −m

∑µ
i=2 ( d µi−1 − 1e) 2µ (r1)a = 2m − 1 1 6 r

r+1 [15]
2 2ms − 1 (2m−2)(2ms−1)

2m−1 − (s + 1)m 6 (r1)a = 2m − 2 1 6 r
r+1 [15]

2 (22m + 1)(2m − 1) (22m + 1)(2m − 2) − 6m 8 (r1)a = 2m − 2 1 6 r
r+1 [15]

2 (2ms − 1)(2m − 1) (2ms − 1)(2m − 2) −ms
∑µ

i=2 ( d µi−1 − 1e) 2µ (r1)a = 2m − 2 1 6 r
r+1 [15]

2 22s + 2s + 1 22s + 2s − 3s 2s + 2 (r1)a = 2s 2s + 1 22s+2s−3s
22s+2s+1 [17]

2 22s − 1 22s − 3s 2s + 2 (r1)a = 2s − 1 2s + 1 22s−3s
22s−1 [17]

p (prime) pem − 1 pe(m−1) − 1 > max (pe + 1, em + 1) (r1)a = m − 1 em
pe(m−1)−1
pem−1 [18]

p (prime) p3e−1
pe−1 p2e + pe −

(
p+1

2

)e
> pe + 2 (r1)a = pe pe + 1

p2e+pe−(p+1
2 )

e

p2e+pe+1 [18]

2 1
6 (2m − 1)(2m − 2) n − (2m − 1 −m) 4 (r1)a = 2m−1 − 2 3 1 − 6(2m−1−m)

(2m−1)(2m−2) [18]
2 (r+1)(r+2)m

2 (r + 1)m > 3 (r1)a = r 2 r
r+2 [19]

2 7m 3m 4 (r1)a = 2 3 3
7 [19]

Fig. 4 Comparison of the minimum distances for r1 = 2, 1 6 t1 6 15:
For t1 > 2, all the proposed codes have joint locality (r1, r2)a = (2, 3).

code rate R less than or equal to r1
r1+t1

, that is, also less than
ours, except the first type of codes in [17], three types of
codes in [18], and the second type of codes in [19]. How-
ever, for the case of q = 2 and r1 = 2, the first construction in
[17], the second and the third constructions in [18], and the
second construction in [19] provide only a [7, 3, 4]2 Simplex
code. Compared to the first construction in [18], our con-
struction provides codes having higher code rate with some
parameters. For example, as an LRC with (r1 = 2, t1 = 9)-
availability, our construction provides a [25, 5, 11]2 code in
Table 1 and its code rate is 5

25 while the construction in [18]
provides a code having the code rate 63

511 .

4. Concluding Remarks

In this paper, we investigated block-punctured binary Sim-
plex codes, named Combination (k, w) codes, with good

Fig. 5 Comparison of the code lengths for r1 = 2, 1 6 t1 6 15: For
t1 > 2, all the proposed codes have joint locality (r1, r2)a = (2, 3).

locality and availability properties. The proposed codes are
simply obtained by a process called block-puncturing that
punctures all the columns of weights from k down to w + 1,
in the generator matrix of a binary Simplex code of dimen-
sion k. The minimum distance, joint locality (r1, r2)a, joint
information locality, availability, and joint information avail-
ability of the proposed codes are determined in closed-form
expressions. Moreover, we suggested another puncturing
method, called subblock puncturing, that punctures fewmore
columns of weight w from the Combination (k, w) code. As
we have expected, the punctured Combination codes also
have good locality and availability properties. Both of Com-
bination codes and punctured Combination codes with cer-
tain choices of parameters attain well-known upper bounds
on the code dimension and minimum distance which take
into account the field size, locality, and availability. More-
over, our codes have the best code rate among the existing
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LRCs with the same availability.
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