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Abstract
In this paper, we investigate the Hamming correlation properties of column sequences from

the (q − 1) × qd−1
q−1 array structure of M-ary Sidelnikov sequences of period qd − 1 for

M |q − 1 and d ≥ 2. We prove that the proposed set Γ (d) of some column sequences has
the maximum non-trivial Hamming correlation upper bounded by the minimum of q−1

M d −1

and M−1
M

[
(2d − 1)

√
q + 1

] + q−1
M . When M = q − 1, we show that Γ (d) is optimal with

respect to the Singleton bound. The set Γ (d) can be extended to a much larger set Δ(d)

by involving all the constant additions of the members of Γ (d), which is also optimal with
respect to the Singleton bound when M = q − 1.

Keywords Codes for FHMA · Sequences · Hamming correlation · Sidelnikov sequences ·
Array structure

Mathematics Subject Classification 94A05 · 94A55

1 Introduction

Frequency-hopping sequences have been widely used in modern communication systems to
resist signal jamming (frequency-hopping spread spectrum, FHSS) or to serve many users
at the same time (frequency-hopping multiple access, FHMA) in both military and com-
mercial communication systems [13,24]. For these systems, the receiver can suffer from the
interference caused by using the same frequency in the same time (in general, it is called
a hit). These are modeled by Hamming auto-correlation for a single sequence or Hamming
cross-correlation for a family of sequences. It may be desirable to make the size of frequency-
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hopping sequence families as large as possible while maintaining low maximum Hamming
auto- and cross-correlation [18,19].

In any design of frequency-hopping sequence family, one hit in either Hamming auto-
correlation or Hamming cross-correlation is inescapable, and some interesting families in the
beginning had been designed with at most one hit. These are summarized in the famous paper
by Shaar and Davis in 1984 [22]. From then on, many researchers found optimal frequency-
hopping sequence families [1,3,7–9,17,27–29] with respect to the Lempel-Greenberger
bound [18], and optimal families [2,4–6,9] with respect to the Peng-Fan bound [19]. Recently,
[10] introduced near-optimal frequency hopping sequences with respect to the Lempel-
Greenberger bound.

For the perspective of coding theory, the family of frequency-hopping sequences is equiv-
alent to non-binary cyclic codes with good Hamming distance. The earliest example using
this is from Reed-Solomon (RS) codes [20]. Some interesting bounds from this relation are
obtained [6]. It is interesting to find that the third construction of Reference [6] was founded
by Reference [25], based on a well-known property of cyclic codes.

Sidelnikov introduced a sequence over the integers mod M which is now called the Sidel-
nikov sequence [23]. He proved two different properties of the sequences: (1) the (complex)
correlation property and (2) the Hamming correlation property. We call these the first and
the second result of Sidelnikov.

The first result of Sidelnikov was extended for constructing sequence families with good
(complex) correlation [11,14,15]. Recently, it has been further extended by considering col-

umn sequences of the (q − 1) × qd−1
q−1 array structure of a Sidelnikov sequence of period

qd − 1. It was initially started by Yu and Gong [30] for the case d = 2 and generalized
by Reference [16] to d ≥ 3. Later, Kim, Kim, Song analyzed the (complex) correlation of
column sequences from the array structure of Sidelnikov sequences of different periods [26].

The second result of Sidelnikov [23, Theorem 4] can be rephrased as follows: for M |q−1,
the maximum out-of-phase Hamming auto-correlation of an M-ary Sidelnikov sequence of
period q−1 is (q−1)/M+ i where i ∈ {0, 1} depends on q and M . Several decades later, by
[12], it was recognized that an optimal frequency-hopping sequence family [4, Theorem 4],
constructed separately from Sidelnikov sequences, is indeed a set of a Sidelnikov sequence
and all its constant additions. One interesting point is that [23, Theorem 6] implies some
special case of [4, Theorem 4]. Now, in this paper, we investigate the Hamming correlation
properties of column sequences from the array structure of the Sidelnikov sequences.

After reviewing Sidelnikov sequences and their array structure in Sect. 2, we discuss the

Hamming correlation properties of column sequences from the (q−1)× qd−1
q−1 array structure

of M-ary Sidelnikov sequences of period qd − 1 for M |q − 1 and d ≥ 2. We prove that
the proposed set Γ (d) of some column sequences has the maximum non-trivial Hamming
correlation upper bounded by the minimum of q−1

M d−1 and M−1
M

[
(2d − 1)

√
q + 1

]+ q−1
M .

When M = q − 1, we show that Γ (d) is optimal with respect to the Singleton bound. The
set Γ (d) can be extended to much larger set Δ(d) by involving all the constant additions
of the members of Γ (d), which is also optimal with respect to the Singleton bound when
M = q − 1. In Sect. 4, we finish this paper with two problems for the future work.
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2 Preliminaries

2.1 Notation

We will use the following notation:

– p is a prime number.
– q is a prime power q = pr with a positive integer r .
– GF(q) is the finite field with q elements and GF(q)∗ = GF(q)\{0}.
– α is a primitive element of GF(qd).

– β = α
qd−1
q−1 is a primitive element of GF(q).

– logβ(·) is a discrete logarithm from GF(q) to the integers mod q − 1 defined by

logβ(x) = k if x = βk ∈ GF(q).

We will use logβ(0) = 0 for convenience.
– pl(x) is the minimal polynomial over GF(q) of −α−l .

– ωM = exp
(
2π

√−1
M

)
is a complex primitive M-th root of unity.

– ψ is a multiplicative character of GF(q) of order M defined by

ψ(x) = ω
logβ (x)
M .

Note that ψ(0) = 1.

2.2 Correlation of sequences

Throughout this paper, wewill analyze theHamming correlation of sequences that are defined
over the integers mod M . We will refer the sequences defined over the integers mod M to
M-ary sequences.

Let x = {x(t)}L−1
t=0 and y = {y(t)}L−1

t=0 be two M-ary sequences of period L . The periodic
Hamming correlation between x and y at time shift τ is defined by

Hx,y(τ ) =
L−1∑

t=0

h [x(t + τ), y(t)] ,

where

h[a, b] =
{
1, if a ≡ b (mod M)

0, otherwise.

The Hamming correlation can also be written by using the complex primitive M-th root of
unity ωM as

Hx,y(τ ) =
L−1∑

t=0

(
1

M

M−1∑

k=0

ω
(x(t+τ)−y(t))k
M

)

. (1)

If x, y are the same or y is a cyclic shift of x , then we call it Hamming auto-correlation of x .
Otherwise, we call it Hamming cross-correlation of x and y.
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LetK be a set ofM-ary sequences of the sameperiod.Themaximumnon-trivialHamming
correlation among sequences in K , denoted by Hmax(K ) is

Hmax(K ) = max

⎧
⎨

⎩
max
x∈K
τ �=0

Hx (τ ), max
x,y∈K
x �=y

Hx,y(τ )

⎫
⎬

⎭
.

We also need the periodic (complex) correlation between two M-ary sequences x and y
of period L at time shift τ , defined by

Cx,y(τ ) =
L−1∑

t=0

ω
x(t+τ)−y(t)
M .

Similar to the case ofHamming correlation, for a given setK ofM-ary sequences of the same
period, the maximum non-trivial (complex) correlation among sequences in K , denoted by
Cmax(K ), is

Cmax(K ) = max

⎧
⎨

⎩
max
x∈K
τ �=0

|Cx (τ )| , max
x,y∈K
x �=y

∣
∣Cx,y(τ )

∣
∣

⎫
⎬

⎭
.

2.3 Sidelnikov sequences and their array structure

Definition 1 [23,30] For an odd prime power q and an integer d , let α be a primitive element
of GF(qd) and M ≥ 2 be a divisor of qd − 1. Define, for k = 0, 1, ..., M − 1,

Dk =
{
αMi+k − 1 | 0 ≤ i <

qd − 1

M

}
.

Then, an M-ary Sidelnikov sequence {sd(t)} of period qd − 1 is defined as Reference [23],
for t = 0, 1, ..., qd − 2,

sd(t) =
{
0, if αt = −1,

k, if αt ∈ Dk,

or equivalently [30],
sd(t) = logα(αt + 1) (mod M), (2)

with the convention logα(0) = 0.

Example 1 For q = 7 and d = 2, a root α of the primitive polynomial x2+ x+3 over GF(7)

is a primitive element of GF(72). Then, by (2), a Sidelnikov sequence {sd(t)}72−2
t=0 of period

72 − 1 = 48 can be obtained by letting sd(t) = logα(αt + 1) (mod M) for some non-trivial
divisor M of qd − 1. For example, when M = 6, a 6-ary Sidelnikov sequence of period 48
is obtained [30]

{sd(t)}47t=0 = {4, 1, 5, 0, 5, 1, 5, 1, 2, 4, 4, 2, 2, 2, 5, 4, 2, 4, 3, 3, 1, 0, 4, 4,
0, 5, 0, 3, 5, 2, 3, 5, 4, 1, 3, 1, 2, 3, 0, 1, 0, 0, 5, 2, 1, 3, 3, 0}.

Furthermore, it was shown by Reference [16] that, when M is also a divisor of q − 1, (2)
can be written as

sd(t) ≡ logβ

(
Nd
1 (αt + 1)

)
(mod M), (3)
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where Nd
1 (·) is the norm from GF(qd) to GF(q), and β = α

qd−1
q−1 is the primitive element

of GF(q).
It is always possible to write an M-ary Sidelnikov sequence of period qd − 1 as an array

of size (q −1)× qd−1
q−1 . For example, the 6-ary Sidelnikov sequence of period 48 in the above

example can be written as a 6 × 8 array [30]
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 1 5 0 5 1 5 1
2 4 4 2 2 2 5 4
2 4 3 3 1 0 4 4
0 5 0 3 5 2 3 5
4 1 3 1 2 3 0 1
0 0 5 2 1 3 3 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In (q − 1) × qd−1
q−1 array of an M-ary Sidelnikov sequence of period qd − 1, the l-th column

sequence vl(t) of the array can be written as [16]

vl(t) = sd

(
qd − 1

q − 1
t + l

)
, (4)

for t = 0, 1, ..., q − 2.

For a given integer l, denote by Ĉl(d) the q-cyclotmic coset mod qd−1
q−1 which is defined

by

Ĉl(d) = {
l, lq, lq2, ...

}
,

and let ml be the cardinality of Ĉl(d). Then, ml is the least positive integer such that [16]

qd − 1

(qml − 1) gcd( d
ml

, q − 1)

∣∣∣l. (5)

For a given M-ary Sidelnikov sequence {sd(t)} of period qd − 1, consider its (q − 1)× qd−1
q−1

array structure. Then its column sequences have the following properties [16, Theorem 3 and
Corollary 1]:

1. The first column {v0(t)} is a d-multiple of the Sidelnikov sequence of period q − 1

generated by the primitive elementβ = α
qd−1
q−1 ofGF(q). That is, for t = 0, 1, 2, ...q−2,

v0(t) ≡ d logβ(β t + 1) (mod M).

2. If l1, l2 are in the same q-cyclotomic coset mod qd−1
q−1 , then

{
vl1(t)

}
and

{
vl2(t)

}
are

cyclically equivalent, i.e.,
{
vl2(t)

}
is a cyclic shift of

{
vl1(t)

}
.

3. If ml = d , then the l-th column sequence {vl(t)} does not have any sub-period dividing
q − 1. In fact, it has the full period q − 1.

We use the following notation originally defined in Reference [16]: Λ(d) is the set of

smallest representatives of all the q-cyclotomic cosets Ĉl(d)mod qd−1
q−1 except for l = 0, and

Λ′(d) = {l ∈ Λ(d)|ml = d}. (6)

[16] gave constructions for sequence families having good (complex) correlation properties
by using different subsets of Λ(d). Here, we will review briefly only the case with Λ′(d).
The following results will be used in the remaining of this paper, especially in the discussion
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of main contribution of constructing the frequency-hopping sequence families having good
Hamming correlation properties.

– The size of Λ′(d) is known to be 
q/2� for d = 2 [30].
– The size of Λ′(d) is known for some other cases of d: a prime, a prime power, or a

product of two distinct primes [16]. It was proved also by Reference [16] that, for d ≥ 3,
as q → ∞,

∣
∣Λ′(d)

∣
∣ ∼ qd−1

d
. (7)

– A column sequence {vl(t)} with l ∈ Λ′(d) can be represented by [16]

vl(t) = logβ

(
βl pl

(
β t)

)
, (8)

where β = α
qd−1
q−1 is primitive in GF(q) and pl(x) is the minimal polynomial of degree

d over GF(q) of −α−l .
– For a prime power q , let d be an integer with d ≥ 2, M ≥ 2 be a divisor of qd − 1, and

{sd(t)} be a Sidelnikov sequence of period qd − 1. Define a set of column sequences
Σ ′(d) by

Σ ′(d) = {
cvl(t)|l ∈ Λ′(d), 1 ≤ c < M

}
. (9)

Then, the set Σ ′(d) has following properties [16, Theorems 4, 6]:

1. All the sequences in Σ ′(d) are cyclically distinct when 2 ≤ d < 1
2 (

√
q − 2√

q + 1).

2. The size of Σ ′(d) is asymptotic to (M−1)qd−1

d as q → ∞.
3. Cmax(Σ

′(d)) is upper-bounded as

Cmax(Σ
′(d)) ≤ (2d − 1)

√
q + 1. (10)

3 Main construction for sequences with good Hamming correlation
properties

Definition 2 Let M ≥ 2 be a divisor of q − 1 and d ≥ 2. Consider an M-ary Sidelnikov

sequence of period qd −1 given in (2) or (3), its (q−1)× qd−1
q−1 array structure and its column

sequences given in (4) or (8). Define Γ (d) to be the set of its column sequences indexed by
Λ′(d) in (6), that is,

Γ (d) = {
vl(t)|l ∈ Λ′(d)

}
. (11)

Theorem 1 (Hamming correlation bound of Γ (d)) For the sequences in Γ (d) of Definition
2,

Hmax(Γ (d)) ≤ min

{
(q − 1)d

M
− 1,

q − 1

M
+ M − 1

M
[(2d − 1)

√
q + 1]

}
. (12)

Proof From (8), we have

ω
vl (t)
M = ω

logβ (βl pl (β t ))

M = ψ(βl pl(β
t )).

Therefore, by using (1), the Hamming correlation of two column sequences vl1(t) and vl2(t)

of the (q − 1)× qd−1
q−1 array structure of a Sidelnikov sequence of length qd − 1 with column

indices l1, l2 ∈ Λ′(d) can be written as
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Hl1,l2(τ ) =
q−2∑

t=0

1

M

M−1∑

k=0

(ω
vl1 (t+τ)

M )k(ω
vl2 (t)
M )−k (13)

=
q−2∑

t=0

1

M

M−1∑

k=0

[ψ(βl1 pl1(β
t+τ ))]k[ψ(βl2 pl2(β

t ))]−k . (14)

Note that ψ(x) is multiplicative over GF(q)∗ and βl pl(β t ) �= 0 for any t since pl(x) is the
minimal polynomial of degree d ≥ 2 over GF(q). Thus, (14) becomes

Hl1,l2(τ ) =
q−2∑

t=0

1

M

M−1∑

k=0

ψk(βl1−l2 pl1(β
t+τ )pl2(β

t )−1). (15)

We now focus on the inner summation of the above, especially on the argument of ψk .
Note that

1

M

M−1∑

k=0

ψk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x = 0,

1, if x = (βM )e for some e ∈
{
0, 1, ..., q−1

M − 1
}

,

0, otherwise.

(16)

Since pl1(x) and pl2(x) are minimal polynomials of the same degree d ≥ 2, the expression
βl1−l2 pl1(β

t+τ )pl2(β
t )−1 becomes nonzero for any l1, l2, τ , and t . Thus, we should count

the number of elements β t in GF(q)∗ such that

βl1−l2 pl1(β
t+τ )pl2(β

t )−1 = βeM , (17)

for some e ∈
{
0, 1, 2, ..., q−1

M − 1
}
, as t runs from 0 to q − 2. For any β t which satisfies

(17) with some appropriate e, the above relation (17) implies

[βl1−l2 pl1(β
t+τ )pl2(β

t )−1](q−1)/M = (βeM )(q−1)/M = 1,

or
[βl1−l2 pl1(β

t+τ )](q−1)/M − [pl2(β t )](q−1)/M = 0. (18)

Now, we let

g(x) = [βl1−l2 pl1(β
τ x)](q−1)/M − [pl2(x)](q−1)/M .

Then, Hl1,l2(τ ) is the number of roots of g(x) in GF(q)∗.
If l1 = l2 and τ = 0 mod q − 1, the polynomial g(x) becomes identically zero, and

every member of GF(q)∗ is a root. Therefore,

Hl1,l2(τ ) = Hl1,l1(0) = q − 1.

Otherwise, we consider the case where either l1 �= l2 or τ �= 0 mod q − 1. In this
case, g(x) cannot be identically zero, and hence, g(x) is a non-zero polynomial of degree
at most q−1

M d . Since pl(x) is the minimal polynomial of −α−l , its constant term becomes
(−1)d Nd

1 (−α−l) = β−l . Thus, the constant term of g(x) becomes 0, since

[βl1−l2β−l1 ](q−1)/M − (β−l2)(q−1)/M = 0.

This implies that g(x) = x f (x) for some polynomial f (x) of degree at most q−1
M d − 1 over

GF(q). Therefore, we obtain the bound,

Hmax(Γ (d)) ≤ q − 1

M
d − 1. (19)
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On the other hand, from (13), we can obtain another bound by using (10):

Hl1,l2(τ ) = 1

M

M−1∑

k=0

q−2∑

t=0

(ω
vl1 (t+τ)

M )k(ω
vl2 (t)
M )−k

≤ q − 1

M
+ 1

M

M−1∑

k=1

∣
∣
∣
∣
∣
∣

q−2∑

t=0

(ω
vl1 (t+τ)

M )k(ω
vl2 (t)
M )−k

∣
∣
∣
∣
∣
∣

≤ q − 1

M
+ M − 1

M
Cmax(Γ (d))

≤ q − 1

M
+ M − 1

M
[(2d − 1)

√
q + 1]. (20)

By taking the minimum of the two bounds in (19) and (20), we obtain (12). ��
Remark 1 The following are some remarks on the upper-bound in (12).

1. One special case happens when q > 3 and M = q − 1. In this case, we have

Hmax(Γ (d)) ≤ d − 1. (21)

Furthermore, the very special case is Hmax(Γ (2)) ≤ 1. Such a frequency-hopping
sequence family was named ‘one-coincidence sequences’ by Shaar and Davis and is
known to be optimal [22].

2. The other extreme case is when q is odd and M = 2. In this case, we have

Hmax(Γ (d)) ≤ q − 1

2
+ 1

2
[(2d − 1)

√
q + 1]

for d with 2 ≤ d < 1
2 (

√
q − 2/

√
q + 1).

3. Let the two bounds in (19) and (20) be denoted by B1 and B2, respectively. For given q
and d , we can find M such that

B1 = q − 1

M
d − 1 = q − 1

M
+ M − 1

M
[(2d − 1)

√
q + 1] = B2.

It turns out that

M0 = (q − 1)(d − 1) − 1

(2d − 1)
√
q + 2

+ 1

is the solution, and, since M is an integer, we may conclude that

B1 > B2 if and only if M > M0.

For q = 101 and d = 2, Table 1 shows B1 and B2, and minimum of them. Here, observe
that B1 is greater than B2 when M ≤ 4 < M0 = 4.08.

Table 2 shows the true maximum of non-trivial Hamming auto- and cross-correlation for
q=101, d = 2, 3, and all possible values of M . From this, we can observe that the true
maximum meets (12) when M ≥ 10 = √

q − 1 for d = 2 and M ≥ 20 = 2
√
q − 1 for

d = 3.

Corollary 1 For a positive integer c such that gcd (c, M) = 1, define

cΓ (d) = {cvl(t)|vl(t) ∈ Γ (d)} .

The maximum non-trivial Hamming correlation of cΓ (d) is also upper-bounded by (12).
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Table 1 Behavior of the bound in (12) for q = 101, d = 2, and various M

M B1 = q−1
M d − 1 B2 = q−1

M + M−1
M [(2d − 1)

√
q + 1] min(B1, B2)

100 1 31 1

50 3 32 3

25 7 33 7

20 9 34 9

10 19 38 19

5 39 44 39

4 49 48 48

2 99 65 65

Table 2 Maximum Hamming correlation values and bound in (12) for q = 101 and various M, d

M d = 2, |Γ (d)| = 50 d = 3, |Γ (d)| = 3434

Ha,max Hc,max Bound (12) Ha,max Hc,max Bound (12)

100 1 1 1 2 2 2

50 3 3 3 5 5 5

25 7 7 7 11 11 11

20 9 9 9 14 14 14

10 18 19 19 25 25 29

5 32 33 39 38 39 59

4 36 37 48 46 46 63

2 58 59 65 68 69 75

Proof Since (c, M) = 1, we have ω
cvl (t)
M = (ω′

M )vl (t), where ω′
M is another primitive M-th

root of unity. That is, the constant c just changes ωM to ω′
M . ��

From the definition of Γ (d), it is obvious that |Γ (d)| = |Λ′(d)|. As mentioned at the end

of Sect. 2, it was known by Reference [16] that
∣∣Λ′(d)

∣∣ ∼ qd−1

d for d ≥ 3. And, we observe
that it is indeed a lower bound:

Lemma 1 Let 3 ≤ d ≤ M. The size of column index set Λ′(d) is lower bounded by qd−1/d.

Proof The proof is given in Appendix. ��
Now, we will show that, when M = q − 1 and 2 ≤ d ≤ q − 1, the proposed frequency-

hopping sequence family Γ (d) is optimal with respect to the Singleton bound:

Lemma 2 (Singleton bound for frequency-hopping sequences [21, Equation (18)]) LetK be
a family of N frequency-hopping sequences of length L over an alphabet of size M. Then,

Hmax(K ) ≥ �logM (NL) − 1�,
where logM (·) is the logarithm to the base M over the reals.

Theorem 2 Let M = q−1 and 2 ≤ d ≤ q−1. Then the frequency-hopping sequence family
Γ (d) in Definition 2 is optimal with respect to the Singleton bound.
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2546 M. K. Song, H.-Y. Song

Proof From Lemma 2, we have following lower bound on Hmax(Γ (d)):
For d = 2, we have N = 
 q

2 � and L = q − 1. Therefore,

Hmax(Γ (2)) ≥ �logq−1(

q

2
�(q − 1)) − 1�

≥ �1 − logq−1 2� = 1.

For d ≥ 3, we have N ≥ qd−1

d and L = q − 1. Therefore,

Hmax(Γ (d)) ≥ �logq−1(
(q − 1)qd−1

d
) − 1�

≥ �d − 1 − logq−1 d� = d − 1.

From (12) and (21), we conclude that Γ (d) is optimal with respect to the Singleton bound
for M = q − 1 and 2 ≤ d ≤ q − 1. ��
Remark 2 The above can be described alternatively by using the k-th order near-orthogonal
codes from RS codes [20,25]. For each l ∈ Λ′(d), the function logβ(βl pl(β t )) generates
the l-th column sequence and the polynomial βl pl(β t ) of degree d generates a sequence of
length q − 1 over GF(q), which corresponds to a codeword of a q-ary RS code of length
q−1. The corresponding codeword has no zero element, since the polynomial is minimal and
is of degree d ≥ 2. From the Hamming distance property of RS codes, it is obvious that all
the codewords corresponding to a minimal polynomial of degree d are Hamming-correlated
at most d − 1 from each other. Since there is no 0, the map logβ(·) does not affect on the
Hamming correlation.

Remark 3 With the same notations as in Lemma 2, The Peng-Fan bound [19] says that

Hmax(K ) ≥ (LN − M)L

(LN − 1)M
.

The family Γ (d) becomes optimal when d = 2 and not optimal otherwise, with respect to
the Peng-Fan bound above.

For d = 2, Yu and Gong [30] formalized the l-th column sequence as

vl(t) = logβ(β(q+1)t+l + Tr21(α
(q+1)t+l) + 1),

where Trab(x) is the trace from GF(qa) to GF(qb). By using this, pl(x) in (8) becomes

pl(x) = x2 + Tr21(α
−l)x + N2

1(α
−l). (22)

Corollary 2 If M = q−1, then the sequence vl(t) ∈ Γ (2) has one of the following Hamming
auto-correlation profiles:

1. If q is even, then

Hl(τ ) =
{
q − 1, if τ = 0 mod q − 1

1, otherwise.

2. If q is odd, then

Hl(τ ) =

⎧
⎪⎨

⎪⎩

q − 1, if τ = 0 mod q − 1

0, if τ = q−1
2 mod q − 1

1, otherwise.
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Proof From (22),

pl(β
t+τ )−pl(β

t ) = [β2t+2τ+Tr21(α
−l)β t+τ+N2

1(α
−l)] − [β2t + Tr21(α

−l)β t + N2
1(α

−l)]
= β t [β t (β2τ − 1) − Tr21(α

−l)(βτ − 1)].
Note that the condition of Tr21(α

−l) = 0 is

Tr21(α
−l) = 0

⇔ α−l + α−ql = 0

⇔ 1 + α−(q−1)l = 0.

If q is even, Tr21(α
−l) can not be 0 for all l ∈ Λ′(d). If q is odd, Tr21(α

−l) = 0 when l = q+1
2

mod q−1, which are not inΛ′(d). Thus, Tr21(α
−l) �= 0 for any l ∈ Λ. Let τ �= 0 mod q−1.

Then, βτ − 1 �= 0. If q is even, 1− β2τ is non-zero for any τ �= 0 mod q − 1. So, it always
has a root. If q is odd, β2τ − 1 will be zero when τ = q−1

2 mod q − 1. For any other τ �= 0
mod q − 1, it always has a root. ��

The proposed family Γ (d) can be enlarged as follows by including all the constant addi-
tions of the sequences in it:

Definition 3 Let M ≥ 2 be a divisor of q − 1. Let Γ (d) be in Definition 2. Define Δ(d) to
be a set of M-ary sequences including Γ (d) and all its constant additions, that is,

Δ(d) =
⋃

0≤c<M

(c + Γ (d)) = {vl(t) + c|0 ≤ c < M, vl(t) ∈ Γ (d)} .

Theorem 3 (Hamming correlation bound of Δ(d)) For the sequences in Δ(d) of Definition
3,

Hmax(Δ(d)) ≤ min

{
(q − 1)d

M
,
q − 1

M
+ M − 1

M
[(2d − 1)

√
q + 1]

}
. (23)

Proof We note that

vl(t) + c = logβ(βl+c pl(β
t )) mod M .

Then, the proof is similar to that of Theorem 1. ��

Table 3 Maximum non-trivial Hamming correlation values and bound of Δ(d) for q = 101, d = 2, and
various M

M Ha,max Hc,max Upper-bound in (23) |Γ (d = 2)| |Δ(d = 2)|
100 1 2 2 50 5000

50 3 4 4 50 2500

25 7 8 8 50 1250

20 9 10 10 50 1000

10 18 20 20 50 500

5 32 34 40 50 250

4 36 38 48 50 200

2 58 60 65 50 100
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From the definition of Δ(d), it is easy to see that |Δ(d)| = M |Γ (d)|.

Theorem 4 Let M = q − 1 and 2 ≤ d ≤ q − 2. Then, the frequency hopping sequence
family Δ(d) is optimal with respect to the Singleton bound.

Proof We omit the proof since it is similar to that of Theorem 2. ��

Table 3 shows the maximum Hamming auto- and cross-correlation values and the derived
bound for q = 101, d = 2, and all possible values of M . As is the case of Γ (d), the
exact maximum non-trivial Hamming correlation of Δ(d) attains the bound in (23) when
M ≥ 10 = √

q − 1 for d = 2.
In Table 4, some well-known frequency-hopping sequence families and the proposed

sequence families are presented with their parameters. We note that Δ(d) is applicable for
all prime powers q > 3. From Table 4, we see that the family size is larger than the length for
Γ (d) and Δ(d) of this paper and also the family in Reference [25]. For all other cases, the
family size is smaller than the length. Note that, as discussed in Remark 2, Γ (d) and Δ(d)

are closely related to the k-th order near orthogonal codes in Reference [25].

4 Concluding remarks

In this paper, we investigated Hamming correlation properties of some column sequences of
length q − 1 from the array structure of an M-ary Sidelnikov sequence of period qd − 1, and
construct two frequency-hopping sequence families both of them are optimal with respect
to the Singleton bound for the case M = q − 1. The column sequences are selected by the
index set Λ′(d). We note that Reference [16] discussed the (complex) correlation properties
of the same set by Λ′(d), while we discuss the Hamming correlation properties.

Following are two open problems for the future:

1. It would be essential to identify Λ′(d) in an efficient manner for practical use since it
is difficult to systematically enumerate the members of Λ′(d) in general [16]. Find an
algorithm which outputs the members of Λ′(d) as many as possible systematically.

2. In Table 2, the true maximum non-trivial Hamming correlation value attains the upper-
bound q−1

M d − 1 for some choices of M . It would be interesting to find an explicit
condition on M and other parameters at which the true maximum non-trivial Hamming
correlation value attains the upper-bound.

Acknowledgements This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIP) (No. 2017R1A2B4011191).

Appendix: Proof of Lemma 1

Recall that ml = d for any l ∈ Λ′(d) and ml is the least positive integer which satisfies (5).
Then, it is easy to see that

∣∣Λ′(d)
∣∣ = 1

d

(
qd − 1

q − 1
− k − 1

)
, (24)
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where

k =
∑

r |d
r �=1
r �=d

∣
∣
∣
∣

{
l | 1 ≤ l <

qd − 1

q − 1
,ml = r

}∣∣
∣
∣ . (25)

From (5), there are

(qr − 1) gcd
( d
r , q − 1

)

q − 1

column indices from 1 to qd−1
q−1 − 1, which can be divided by

qd − 1

(qr − 1) gcd
( d
r , q − 1

) ,

where 2 ≤ r ≤ d . So, we have

k <
∑

r |d
r �=d
r �=1

(qr − 1) gcd
( d
r , q − 1

)

q − 1
. (26)

Note that any divisor of d is less than or equal to 
d/2� and gcd
( d
r , q − 1

) ≤ q − 1. By
using these, observe that

k <


d/2�∑

r=2

(qr − 1) gcd
( d
r , q − 1

)

q − 1
<


d/2�∑

r=2

qr <
q
d/2�+1 − 1

q − 1
− 1 (27)

By substituting (27) into (24) finally, we obtain the result. ��
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