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New Framework for Sequences With Perfect
Autocorrelation and Optimal Crosscorrelation
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Abstract— In this paper, we give a new framework for
constructing perfect sequences, called generalized Milewski
sequences, over various alphabets including Polyphase (PSK)
as well as Amplitude-and-Polyphase (APSK) in general, and
for constructing optimal sets of such perfect sequences by
using combinatorial designs, called circular Florentine arrays.
Specifically, we prove that, given any positive integer m ≥ 1,
(i) there exists a perfect sequence of period mN 2 for any positive
integer N if there exists a perfect sequence (polyphase or not)
of length m; (ii) an optimal k-set of perfect sequences of length
mN 2 can be constructed if there exist both a k × N circular
Florentine array and an optimal k-set of perfect sequences all of
length m. This enables us to find some optimal k-set of perfect
sequences where k > pmin − 1, where pmin is the smallest prime
factor of mN 2.

Index Terms— Perfect sequences, perfect autocorrelation, opti-
mal crosscorrelation, circular florentine arrays, polyphase, ampli-
tude and polyphase (APSK), APSK+.

I. INTRODUCTION

MODERN communication systems and radar systems
use discrete time signals, which are defined over an

alphabet of some complex numbers. Some famous examples
of these alphabets with two-dimensional constellations are:
Polyphase (PSK), PSK+, Amplitude-and-Polyphase (APSK),
APSK+, etc. Herein, ‘+’ symbol means an extended alpha-
bet by allowing use of the value ‘zero’. The discrete time
signals are usually called sequences, and these are peri-
odically repeated for special purposes: synchronization [1],
channel estimation [28], direct-sequence code-division multi-
ple access [5], [13], [17] in digital communication systems,
ranging [2], [4], [26], and so forth. Those applications
measure the similarity between the transmitted sequence and
the received one by using matched filters to distinguish and/or
to extract the desired information from the backgrounds.

Manuscript received January 11, 2019; revised October 14, 2020; accepted
August 17, 2021. Date of publication August 24, 2021; date of current
version October 20, 2021. This work was supported by the National Research
Foundation of Korea (NRF) funded by the Korean Government through
Ministry of Science, ICT and Future Planning (MSIP) under Grant
2017R1A2B4011191. An earlier version of this paper was presented in part
at SETA 2018. (Corresponding author: Hong-Yeop Song.)

Min Kyu Song was with the Department of Electrical and Electronic
Engineering, Yonsei University, Seoul 03722, South Korea. He is now with
Agency for Defence Development, Daejeon 34186, South Korea (e-mail:
mksong@add.re.kr).

Hong-Yeop Song is with the Department of Electrical and Elec-
tronic Engineering, Yonsei University, Seoul 03722, South Korea (e-mail:
hysong@yonsei.ac.kr).

Communicated by K. Schmidt, Associate Editor for Sequences.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2021.3107611.
Digital Object Identifier 10.1109/TIT.2021.3107611

Herein, the measure of similarity is called autocorrelation
when the (received) sequence is compared with cyclic-shifts
of the same kind, and is called crosscorrelation when it is
compared with cyclic-shifts of different kinds in the family.
Therefore, to distinguish the desired sequence from others,
it is most important to design a single sequence or a family
of sequences with low autocorrelation and/or crosscorrelation
magnitudes.

For the case of autocorrelation, it is obvious that zero
magnitude for any non-zero time shift is the best. Such a
sequence is called “perfect” and has been investigated over
various constellations for several decades. The initial interest
has been on binary perfect sequences of period N . It is
now well-known that no example of binary perfect sequences
of period N > 4 is known and it is conjectured that any
binary sequence of period N > 4 does not achieve the zero
autocorrelation magnitude [13], [17]. The next target is those
over some various phase shift keying (PSK) constellations.
Such perfect sequences are called perfect polyphase sequences
or perfect root-of-unity sequences, and lots of constructions
have been proposed [8], [10], [14], [19], [23], [28], [29],
[31], [32], [34]. In [29], Mow categorized all the previously
known perfect polyphase sequences into four classes: the
generalized Frank sequences [23], the generalized chirp-like
polyphase sequences [34], Milewski sequences [28], and the
perfect sequences from the generalized bent functions due to
Chung and Kumar [10]. He also gave some unified construc-
tions of perfect polyphase sequences and proposed a fact that
his last unified construction in [31] can generate all the (so-far)
known perfect polyphase sequences and proposed a conjecture
that there exists essentially no new example.

Meanwhile, perfect non-polyphase sequences have also been
considered. Non-polyphase perfect sequences have been pro-
posed over PSK+ constellations [6], [7], [20], [22] and over
QAM (quadrature amplitude modulation) constellations [6],
[46]. Recently, these works on perfect sequences over QAM
constellation have been extended to the Gaussian integer
sequences, since any conventional QAM (rectangular QAM)
constellation can be represented by using Gaussian inte-
gers [21], [25], [33]. Obviously, when these perfect Gaussian
integer sequences are real-valued, they become perfect
sequences over ASK (amplitude shift keying) constellation.

On the other hand, using Sarwate’s analysis on minimizing
the maximum crosscorrelation magnitude of sets of perfect
sequences [35], many researchers have proposed sets of perfect
sequences with “optimal” crosscorrelation magnitude in terms
of Sarwate’s bound [3], [29], [32], [34], [44]. So far, these
constructions for correlation-optimal sets of perfect sequences
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are known only over the polyphase constellations. These
constructions are based on Frank sequences [3], [30], [44]
or the generalized Frank sequences [32], [41], the generalized
chirp-like polyphase sequences [34], and Mow’s first unified
construction [29].

Let pmin be the smallest prime factor of the period L of
perfect sequences. Then the size of the previously known
correlation-optimal sets of perfect sequences of period L
cited above [29], [30], [32], [34], [44] can at most achieve
pmin − 1. One interesting point is that no example of a
correlation-optimal set of size more than pmin − 1 is known
so far, and this number has not been shown to be an upper
bound for any reason.

Constructing perfect sequences of longer period from those
of shorter period may be a good approach over non-polyphase
constellations [27], [33], [42]. The direct product construc-
tion [27] is the most well-known technique which produces
perfect sequences of composite period pq from two perfect
sequences of periods p and q, where p is coprime to q.
Recently, the ‘zero-padding and convolution’ construction was
introduced for generating perfect Gaussian integer sequences
of longer period [33]. Some perfect sequences over Amplitude-
and-Polyphase (APSK) alphabet have been proposed recently
in [42].

In this paper, we give a new framework for constructing
perfect sequences, called generalized Milewski sequences,
a special case of which has been presented recently in [42],
over various alphabets including Polyphase (PSK) as well
as Amplitude-and-Polyphase (APSK) in general, and for
constructing optimal sets of such perfect sequences by
using combinatorial designs, called circular Florentine arrays.
Specifically, we prove that, given any positive integer m ≥ 1,
(i) there exists a perfect sequence of period mN2 for any
positive integer N if there exists a perfect sequence (polyphase
or not) of length m (Theorems 1 and 2); (ii) an optimal k-set
of perfect sequences of length mN2 can be constructed if there
exist both a k × N circular Florentine array and an optimal
k-set of perfect sequences all of length m (Theorems 3 and 4).
This enables us to find some optimal k-set of perfect sequences
where k > pmin − 1, where pmin is the smallest prime factor
of the length mN2 of perfect sequences.

After some preliminaries in Section II, we present our
main contribution of this paper in Section III. We first give
our main framework, which is a special type of interleaved
sequences. In Section III-A, we prove the necessary and
sufficient condition for perfect autocorrelation of the output
sequences from the main construction, which are called the
generalized Milewski sequences. Section III-B is devoted
to describing sets of generalized Milewski sequences which
are optimal in terms of Sarwate’s bound. The connection
between optimal sets of generalized Milewski sequences and
circular Florentine arrays is also given here. We also derive
the maximum size of optimal sets of generalized Milewski
sequences of length mN2, which also describes the maximum
size of optimal sets constructed by using all the known perfect
polyphase sequences. Section IV concludes the paper with
some concluding remarks.

II. PRELIMINARIES

We will briefly review some notation and some well-known
results which are useful in our presentation of the main result
later.

• A k-set is a set of size k and an N -subset is a subset of
size N .

• Z is the set of integers and ZN is the integers modulo
N .

• ωN is a complex primitive N -th root of unity. Without
subscript, we fix that ω is always a complex primitive
mN -th root of unity for positive integers m and N .

• UN is the set of all possible sequences of period N over
the complex unit circle.

• A sequence sss of length L is denoted by sss = {s(n)}L−1
n=0 .

For an integer n with 0 ≤ n < L, s(n) denotes the n-th
term of sss. For n outside this range, s(n) may denote the n
(mod L)-th term of sss, where the sequence is considered
to be repeating periodically with period L. Therefore,
we may say a sequence of length L and that of period
L interchangeably in general. However, a sequence of
length L is sometimes used to denote a vector of finite
length L in some formula. The distinction may be clear
in the context. All the sequences in this paper are defined
over the complex numbers.

• Given two sequences sss = {s(n)}L−1
n=0 and fff =

{f(n)}L−1
n=0 both of period L, we may say the following:

– sss = fff if s(n) = f(n) for all n;
– sss is a cyclic shift of fff if there exists an integer τ

such that s(n) = f(n + τ) for all n.

• The periodic (unnormalized) correlation between sss =
{s(n)}L−1

n=0 and fff = {f(n)}L−1
n=0 both of period L at shift

τ is denoted by Csss,fff (τ), and is defined by

Csss,fff(τ) =
L−1∑
n=0

s(n + τ)f∗(n),

where n+τ is computed mod L and the asterisk refers to
the complex conjugate. Note that it can be any complex
number.

– When fff is a cyclic shift of sss, i.e., when they are
cyclically equivalent, the above correlation becomes
autocorrelation of sss, and is denoted by Csss(τ). In this
case, the energy allocated to the sequence sss is given
by Csss(0) and denoted by Esss.

– Otherwise, the above correlation Csss,fff (τ) is called
crosscorrelation of sss and fff .

• A sequence sss = {s(n)}L−1
n=0 is called a perfect sequence

if Csss(τ) = 0 for all τ �≡ 0 (mod L).
– It is well-known that, {s(n)ωan

L }L−1
n=0 is a perfect

sequence of length L for any integer a, whenever
sss is a perfect sequence of length L [13].

– In general, a perfect sequence sss of length L is
N -modulatable [44] for a divisor N of L if the
sequence {s(n)μ(n)}L−1

n=0 is also perfect for any
μμμ ∈ UN .
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– We note that some similar property is implied in
the earlier work by Kumar, Scholtz, and Welch [23,
Thm. 3].

• Let H be a set of perfect sequences of period L in which
any sequence sss ∈ H has the same energy Esss = Csss(0).
Denote by θc the maximum crosscorrelation magnitude
of sequences in the set H. Then, Sarwate introduced a
lower bound in 1979 as

θc ≥ Esss√
L

. (1)

Note that this bound does not depend on how many
sequences the set H contains.

– A pair of perfect sequences of period L is called
an optimal pair if their crosscorrelation attains the
lower bound in (1) with equality.

– A set of perfect sequences of period L is called an
optimal set if any pair of two distinct members in
the set is an optimal pair.

– The pair of perfect sequences sss and fff of length L
and of energy E is optimal if and only if

|Csss,fff (τ)| =
E√
L

(2)

for any τ [43].

• Let sss0, sss1, . . . , sssM−1 be M (not necessarily distinct)
sequences all of length T , in which, for 0 ≤ i ≤ M − 1,

sssi = {si(n)}T−1
n=0 = {si(0), si(1), . . . , si(T − 1)} .

Then, the interleaved sequence sss of period MT obtained
from sss0, sss1, . . . , sssM−1 is denoted by

sss = I(sss0, sss1, . . . , sssM−1) = {s(n)}MT−1
n=0 , (3)

whose n-th term is given by

s(n) = sr(q)

where q and r are the quotient and remainder when n is
divided by M , i.e.,n = qM + r with 0 ≤ r < M .

– Note here that (sss0, sss1, . . . , sssM−1) in (3) is regarded
as a T × M array, and the interleaving operator I
reads row-by-row the T × M array to produce the
sequence sss of length MT .

– Let

sss = I (sss0, sss1, . . . , sssM−1)

and

fff = I (fff0, fff1, . . . , fffM−1)

be two interleaved sequences of length MT . Then,
the correlation between sss and fff is given by

Csss,fff(τ) =
M−1∑

r=M−rτ

T−1∑
q=0

sr+rτ (q + qτ + 1)f∗
r (q)

+
M−rτ−1∑

r=0

T−1∑
q=0

sr+rτ (q + qτ )f∗
r (q), (4)

where τ = qτM + rτ with 0 ≤ rτ < M [45].

• A k × N circular Florentine array [9], [11], [12], [16],
[18], [36]–[40] is equivalent to a set of k distinct permu-
tations π1, π2, . . . , πk of the integers modulo N such that
the equation

πi(x + τ) = πj(x)

has exactly one solution x for any two distinct permuta-
tions πi and πj and for any shift τ . We mention this here
because it is closely related with the construction for an
optimal set of generalized Milewski sequences.

– Let Fc(N) denotes the largest integer such that an
Fc(N)×N circular Florentine array exists. The basic
bound on Fc(N) is given by

p − 1 ≤ Fc(N) ≤ N − 1,

where p is the smallest prime factor of N .
– It is well-known by [16] that if N is even, then

Fc(N) = 1.

– It is also well-known that if N is an odd prime, then
Fc(N) = N − 1, that is, an (N − 1) × N circular
Florentine array exists.

– It is open (for more than 30 years) whether the
existence of an (N−1)×N circular Florentine array
implies that N is an odd prime.

– It is interesting to find the current status of the lower
bound on Fc(N) in [37] which is slightly better than
the basic one p − 1 for some small values of N .

III. GENERALIZED MILEWSKI

(POLYPHASE/NON-POLYPHASE) SEQUENCES

Following is a main framework of construction for
sequences of longer period mN2 by using sequences of shorter
period m including the trivial case m = 1.

Definition 1 (Main Framework): Let m and N be two pos-
itive integers, ω be a complex primitive mN -th root of unity,
UN be the set of all possible sequences of length N over
the complex unit circle. We define a family of interleaved
sequences as

A (B, π) = {I (S (B, π,μμμ)) | μμμ ∈ UN} .

Herein, S(B, π,μμμ) is the collection of sequences

sss0, sss1, . . . , sssN−1,

which are defined as, for each r = 0, 1, . . . , N − 1,

sssr =
{
βr(q)μ(r)ωqπ(r)

}mN−1

q=0
, (5)

where
• B is a collection of N (not necessarily distinct) sequences

βββ0,βββ1, . . . ,βββN−1 all of length m,
• π is a function from ZN to ZmN .
The r-th column sequence sssr of length mN in (5) is shown

in Fig. 1. Herein, each component sequence βββr = {βr(q)}m−1
q=0

is repeated N times and the result is multiplied by μ(r)ωqπ(r)

for q = 0, 1, . . . , mN − 1. We would like to emphasize two
special cases of the above framework of construction:
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Fig. 1. The r-th column sequence sssr of the set S (B, π,μμμ).

• We may write A (βββ, π) when

βββ0 = βββ1 = · · · = βββN−1 = βββ.

• When βββ = {1} in addition, we may write A ({1}, π) and
the length will be N2.

We will investigate in the remaining of this paper when the
members of A (B, π) are perfect sequences, and when any two
members, one from A (B1, π) and the other from A (B2, σ),
have optimal crosscorrelation. For this, the following plays
some important role:

Definition 2: Let π and σ be two functions from ZN to
ZmN . We define

Ψπ,σ(τ) = {x ∈ ZN | π(x + τ) ≡ σ(x) (mod N)} .

When π = σ, we use Ψπ(τ) simply.
Let B1 = {βββ0,βββ1, . . . ,βββN−1}, B2 = {γγγ0, γγγ1, . . . , γγγN−1},

and π, σ be two functions from ZN to ZmN , and μμμ,ννν
be two members of UN . By (4), the correlation of sss =
I (S (B1, π,μμμ)) and fff = I (S (B2, σ,ννν)) is

Csss,fff (τ) =
N−rτ−1∑

r=0

mN−1∑
q=0

sr+rτ (q + qτ )f∗
r (q)

+
N−1∑

r=N−rτ

mN−1∑
q=0

sr+rτ (q + qτ + 1)f∗
r (q),

where τ = qτN+rτ with 0 ≤ rτ < N . By writing q = um+t
with 0 ≤ t < m, the first term of the RHS above becomes

N−rτ−1∑
r=0

mN−1∑
q=0

sr+rτ (q + qτ )f∗
r (q)

=
N−rτ−1∑

r=0

μ(r + rτ )ν∗(r)ωπ(r+rτ )qτ

×
mN−1∑

q=0

βr+rτ (q + qτ )γ∗
r (q)ω[π(r+rτ)−σ(r)]q

=
N−rτ−1∑

r=0

μ(r + rτ )ν∗(r)ωπ(r+rτ )qτ

×
N−1∑
u=0

ω
[π(r+rτ )−σ(r)]u
N

×
m−1∑
t=0

βr+rτ (t + qτ )γ∗
r (t)ω[π(r+rτ)−σ(r)]t.

By the similar way, the second term becomes

N−1∑
r=N−rτ

mN−1∑
q=0

sr+rτ (q + qτ + 1) f∗
r (q)

=
N−1∑

r=N−rτ

μ(r + rτ )ν∗(r)ωπ(r+rτ )(qτ +1)

×
N−1∑
u=0

ω
[π(r+rτ )−σ(r)]u
N

×
m−1∑
t=0

βr+rτ (t + qτ + 1)γ∗
r (t)ω[π(r+rτ)−σ(r)]t.

Herein, we use the following basic lemma:
Lemma 1: Let N be a positive integer. Then, for an integer

a,

N−1∑
u=0

ωau
N =

{
N, if a ≡ 0 (mod N),
0, otherwise.

By the lemma, it is easy to see that

N−1∑
u=0

ω
[π(r+rτ)−σ(r)]u
N =

{
N, r ∈ Ψπ,σ(rτ ),
0, r �∈ Ψπ,σ(rτ ).

Therefore, we finally get the following formula:
Lemma 2: For given B1 = {βββ0,βββ1, . . . ,βββN−1} and B2 =

{γγγ0, γγγ1, . . . , γγγN−1}, let sss = I (S (B1, π,μμμ)) and fff =
I (S (B2, σ,ννν)) be two sequences of length mN2 constructed
by Definition 1. Then, the correlation between sss and fff at shift
τ is, for τ = qτN + rτ with 0 ≤ rτ < N ,

Csss,fff(τ)

= N
∑

r∈Ψπ,σ(rτ )

μ(r + rτ )ν∗(r)ωπ(r+rτ )(qτ+δ)

×
(

m−1∑
t=0

βr+rτ (t + qτ + δ) γ∗
r (t)ω[π(r+rτ)−σ(r)]t

m

)
(6)

where

δ =

{
0, if 0 ≤ r < N − rτ ,

1, if N − rτ ≤ r < N.

A. Condition for Perfect Autocorrelation

Theorem 1: Assume all the notations in Definitions 1, 2 and
Lemma 2. Then, any sequence in A (B, π) is perfect if and
only if the following conditions are satisfied:

1) |Ψπ(rτ )| = 0 for rτ = 1, 2, . . . , N − 1, that is, π(x)
(mod N) for x = 0, 1, . . . , N − 1 is a permutation over
ZN .

2) B is a collection of perfect sequences all of period m
with the same energy.
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Proof: We will prove the sufficiency first. We begin by (6)
with sss = fff = I (S (B, π,μμμ)). Now, it is enough to observe
the following two cases: (i) τ �= 0 (mod N) and (ii) τ = 0
(mod N) but τ �= 0 (mod mN2). We will write τ = qτN +
rτ with 0 ≤ rτ < N .

CASE(i) Assume that 0 < rτ < N . Since π is a
permutation over ZN , the set Ψπ(rτ ) is empty for all rτ =
1, 2, . . . , N − 1. Therefore, (6) implies Csss(τ) = 0.

CASE(ii) Assume that rτ = 0, i.e., τ = qτN . Then, δ = 0
for all r, and

Ψπ(rτ = 0) = {0, 1, 2, . . . , N − 1} .

Therefore, (6) becomes

Csss(qτN) = N
∑

r∈Ψπ(0)

μ(r)μ∗(r)ωπ(r)qτ

×
(

m−1∑
t=0

βr(t + qτ )β∗
r (t)

)

= N

N−1∑
r=0

ωπ(r)qτ Cβββr
(qτ ). (7)

When qτ �≡ 0 (mod m), the value Cβββr
(qτ ) = 0 for any

r = 0, 1, . . . , N − 1 since they all are perfect sequences, and
hence, Csss(τ) = 0. Otherwise, we let qτ = ml for some integer
l. Then, Cβββr

(qτ ) = Cβββr
(ml) = EB for any r = 0, 1, . . . , N−

1 since they all have the same energy, say, EB . Since π(r)
(mod N) is a permutation over ZN , we have

Csss(mlN) = NEB

N−1∑
r=0

ωπ(r)ml = 0,

by Lemma 1 since l �= 0 (mod N).
We now will prove that the two conditions are satisfied

necessarily if sss = I (S (B, π,μμμ)) is a perfect sequence of
period mN2 and with the energy Esss > 0 for any μμμ ∈ UN .
We write τ = qτN + rτ with 0 ≤ rτ < N and consider the
cases where rτ = 0, i.e., τ = qτN . Then, using the expression
for Csss(qτN) as given in (7) and from the assumption that sss
is perfect, we have

Csss(qτN) = N

N−1∑
r=0

ωπ(r)qτ Cβββr
(qτ )

=

{
Esss if qτN = 0 (mod mN2),
0 otherwise.

(8)

Write qτ = gm + h with 0 ≤ h < m. Then, by considering
all the cases of h = 0, we have, for qτ = 0, m, 2m, . . . , (N −
1)m which are all 0 mod m, the relation (8) becomes

N [ωgπ(r)
N ]

⎡
⎢⎢⎢⎣

Cβββ0(0)
Cβββ1(0)

...
CβββN−1(0)

⎤
⎥⎥⎥⎦ = Esss

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , (9)

where g, r = 0, 1, . . . , N − 1 are row and column indices of
the matrix [ωgπ(r)

N ], respectively. Multiply the (unnormalized)

Fourier matrix of order N of the following form [ωgr
N ] to both

LHS and RHS of (9). Then, we have

N [ ωgr
N ][ωgπ(r)

N ]

⎡
⎢⎢⎢⎣

Cβββ0(0)
Cβββ1(0)

...
CβββN−1(0)

⎤
⎥⎥⎥⎦ = Esss

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ . (10)

Now, two matrices of order N on LHS of the above are
the (unnormalized) Fourier matrix and its column-changed
version by π where the r-th column comes to the π(r)
(mod N)-th column for each r = 0, 1, . . . , N − 1. Now,
if π(x) (mod N) is not a permutation of ZN , then, there must
be at least one all-zero row in the product of two matrices
[ωgr

N ][ωgπ(r)
N ], which gives the value zero on LHS of (10).

This is a contradiction since (10) also shows that it is non-zero
on RHS. Therefore, π(x) (mod N) must be a permutation of
ZN .

Now, assume that π(x) (mod N) is a permutation over ZN .
Then, the matrix [ωgπ(r)

N ] in (9) is a Vandermonde matrix of
full rank. By solving (9), we have

Cβββ0(0) = Cβββ1(0) = · · · = CβββN−1(0) =
Es

N2
,

that is all the βββi’s are the same energy.
Similarly, for each h = 1, 2, . . . , m−1, we have, from (8),

[
ω(gm+h)π(r)

]
⎡
⎢⎢⎢⎣

Cβββ0(h)
Cβββ1(h)

...
CβββN−1(h)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ .

where the coefficient matrix [ω(gm+h)π(r)] is a Vandermonde
matrix of full rank, where g, r = 0, 1, . . . , N − 1 are row and
column indices. Therefore, we conclude that βββr is perfect for
any r.

Remark 1: The main framework in Definition 1 has been
motivated by Milewski’s perfect polyphase sequence con-
struction. Gabidulin also considered similar one indepen-
dently [15, Theorem 2], but it is essentially a subset of
Milewski sequences [13].

The main framework in Definition 1 with the necessary and
sufficient condition for perfect autocorrelation in Theorem 1 is
therefore a generalization into (i) those perfect sequences over
polyphase and/or non-polyphase alphabets and (ii) those pre-
fect sequences with more choices on period. In the remaining
of this paper, therefore, any sequence constructed by the main
construction will be called a generalized Milewski sequence
when it has the perfect autocorrelation. If, furthermore, it is
a polyphase sequence, then it will be called a generalized
Milewski polyphase sequence.

Example 1: The generalized Milewski sequences from The-
orem 1 could be either polyphase or non-polyphase (APSK
when non-polyphase). Herein, we give some examples when
the generalized Milewski sequences are over the APSK con-
stellations. For the simplicity, we let π be the identity function
and μμμ be the all-one sequence.

1) By using βββ0 = βββ1 = {0,−1, 1, 0, 1, 1} given by [24],
we have a generalized Milewski sequence of length 24
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Fig. 2. Constellations of perfect sequences in Example 1.

(when N = 2 and m = 6) over the constellation shown
in Fig. 2-(a). The constellation has 13 different symbols
with mark ‘×’. Among them, only 11 symbols with
mark ‘◦’ are essentially used.

2) By using

βββ0 = βββ1 = βββ2 = {3,−2, 3,−2,−2, 3,−2,−7,−2,−2}
given by [21], we have a generalized Milewski sequence
of length 90 (when N = 3 and m = 10) over the
constellation shown in Fig. 2-(b).

We would also remark that the generalized Milewski
sequences are N -modulatable in the sense of [44] or the
discussion in Section II. This is true even when the generalized
Milewski sequences are non-polyphase perfect sequences.

For a composite number N , let N1 be a proper divisor of N
and B be a collection of N perfect sequences of length m and
the same energy. Then, it is possible to construct a generalized
Milewski sequence sss of length mN2 in two different ways:

• (Direct method): sss is constructed by using B directly.
• (Two-step method): sss is constructed by using a collec-

tion of generalized Milewski sequences of period mN2
1 ,

each of which is constructed by using only some N1

perfect sequences of B.
Theorem 2: Assume that N is a composite number.
1) Any generalized Milewski sequence of length mN2

from the two-step method can be also obtained by the
direct method.

2) There exists a generalized Milewski sequence of length
mN2 from the direct method which cannot be obtained
by the two-step method.

Proof: See Appendix.
Remark 2: The generalized Milewski polyphase sequences

from the main construction by using Zadoff-Chu sequences
become the perfect polyphase sequences constructed by
Mow [31]. This can be simply shown by letting m be a
square-free integer, N be any positive integer, and B =
{βββ0,βββ1, . . . ,βββN−1} be a collection of (not necessarily all
distinct) Zadoff-Chu sequences [8] of period m.

The perfect polyphase sequences constructed by Mow is
known to contain all the known perfect polyphase sequences so
far, and it is conjectured that there is no new perfect polyphase

sequences [31]. The conjecture still remains open, since you
will obtain no new perfect polyphase sequence from the main
construction whichever collection of Mow’s perfect polyphase
sequences you might use. The generalized Milewski polyphase
sequences by using any of Mow’s sequences is a result of two-
step method since any of Mow’s sequences is a result of the
main construction. See Theorem 2.

Remark 3: For any given function π from ZN to ZmN ,
write π(x) as

π(x) = qπ(x)N + rπ(x) (11)

with 0 ≤ rπ(x) < N . The proof (i) above implies that qπ has
nothing to do with the perfectness of the generalized Milewski
sequences. On the other hand, qπ is related with the alphabet
size of the resulting sequences.

For a given permutation rπ over ZN , let

qπ(x) = −rπ(x)N−1 (mod m/g), (12)

where g = gcd(m, N). Then, π(x) becomes a multiple of
m/g for all x, and hence the term ωqπ(x) in (5) is essentially
gN -root of unity. Therefore, when π in (11) satisfies (12),
the alphabet size could be determined easily even when the
input sequeces βββ0,βββ1, . . . ,βββN−1 are not polyphase. As shown
in Table I, the generalized Milewski construction generates
perfect PSK+ sequences which is more flexible on the choice
of length and alphabet size.

The generalized Milewski construction can also be applied
to perfect Gaussian integer sequences by the similar way, but,
to maintain the result being over gaussian integers, there is a
strong restriction: N can be either 2 or 4 and gN should be
less than or equal to 4.

We finish this subsection by giving a formula for calculating
energy efficiency of the generalized Milewski sequences. Here,
the energy efficiency ηsss of a given sequence sss of period L with
energy Esss is defined by [13]

ηsss =
∑L−1

n=0 |s(n)|2 /L

max
0≤n<L

|s(n)|2 =
Esss/L

max
0≤n<L

|s(n)|2 .

Corollary 1: Let sss ∈ A (B, π) be a generalized Milewski
sequence from the collection B in which all the sequences
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TABLE I

COMPARISON WITH SOME PERFECT SEQUENCES OVER PSK+ CONTELLATION

have the same energy EB . Denote by ηr the energy
efficiency of the r-th sequence βββr in B. Then, ηsss =
min {η0, η1, . . . , ηN−1}.

Proof: It is enough to observe that

Esss/L = EBN2/mN2 = EB/m,

and

max
0≤n<mN2

|s(n)|2 = max
0≤r<N,
0≤q<mN

|βr(q)|2 .

B. Conditions for Optimal Crosscorrelation

To describe optimal crosscorrelation of generalized
Milewski sequences, the following lemma is useful:

Lemma 3 ( [41]): Let π and σ be two functions from
ZN to ZmN , and both are permutations over ZN when the
range is reduced to ZN . Recall the definition of Ψπ,σ(τ) in
Definition 2. Then, we have

N−1∑
τ=0

|Ψπ,σ(τ)| = N. (13)

Theorem 3: Let B1 = {βββ0,βββ1, . . . ,βββN−1} and B2 =
{γγγ0, γγγ1, . . . , γγγN−1} be two collections of perfect sequences all
of length m and the same energy EB . Construct generalized
Milewski sequences sss ∈ A (B1, π) and fff ∈ A (B2, σ) with
the same energy Esss = EBN2 from Theorem 1. Then, sss and
fff have optimal crosscorrelation if and only if the following
conditions are satisfied for each rτ = 0, 1, . . . , N − 1:

1) Ψπ,σ(rτ ) = {x}, i.e., |Ψπ,σ(rτ )| = 1; and
2) for the unique x ∈ Ψπ,σ(rτ ), the pair of sequences{

βx+rτ (t)ωπ(x+rτ)t
m

}m−1

t=0
and

{
γx (t) ωσ(x)t

m

}m−1

t=0

is optimal.
Proof: To prove the necessity, let sss = I (S (B1, π,μμμ))

and fff = I (S (B2, σ,ννν)) for some μμμ,ννν ∈ UN , and assume
that the pair of sequences sss and fff is optimal. Suppose on the
contrary that

|Ψπ,σ(rτ )| ≥ 2

for some τ = qτN +rτ . Then, from Lemma 3, we can always
find an integer τ ′ with 0 ≤ rτ ′ ≤ N − 1 such that

|Ψπ,σ(rτ ′)| = 0.

Then, Csss,fff (τ ′) = 0 from (6), which is a contradiction
to (2). Therefore, we conclude that |Ψπ,σ(rτ )| = 1 for any
τ = qτN + rτ .

Now, let x be the unique member of Ψπ,σ(rτ ). Then,
by Lemma 2, the crosscorrelation magnitude |Csss,fff (τ)| of sss
and fff at shift τ = qτN + rτ becomes

N

∣∣∣∣∣
m−1∑
t=0

βx+rτ (t + qτ + δ)γ∗
x(t)ω[π(x+rτ)−σ(x)]t

m

∣∣∣∣∣ . (14)

Since sss and fff form an optimal pair, by (2), we have

|Csss,fff (τ)| =
Esss√
mN2

=
EBN√

m
,

and hence, we get the conclusion.
The sufficiency is easily shown by just calculating

their crosscorrelation with the formula given in Lemma 2.
It becomes obvious by considering (14).

Following is an interesting special case of the necessary and
sufficient condition in Theorem 3 when the ranges of π and
σ are the same N -subsets of ZmN :

{π(x) | x ∈ ZN} = {σ(x) | x ∈ ZN} . (15)

Corollary 2: Let sss ∈ A (B1, π) and fff ∈ A (B2, σ) be two
generalized Milewski sequences of period mN2 with the same
energy, in Theorem 3. Assume that two functions π and σ have
the same range as in (15). Then, sss and fff have the optimal
crosscorrelation if and only if the following conditions are
satisfied for each rτ = 0, 1, . . . , N − 1:

1) Ψπ,σ(rτ ) = {x}, i.e., |Ψπ,σ(rτ )| = 1; and
2) for the unique x ∈ Ψπ,σ(rτ ), the pair of sequences

βββx+rτ and γγγx is optimal.
Proof: Recall the decomposition of π in (11). We do the

same for σ and write

σ(x) = qσ(x)N + rσ(x),

with 0 ≤ rσ(x) < N for any x ∈ ZN .
By the assumption that the ranges of both π and σ are the

same N -subsets of ZmN , and their reduction modulo N is a
permutation over ZN we have the following:

π(x + rτ ) = σ(x) (mod mN)

whenever

π(x + rτ ) = σ(x) (mod N).

This implies that for x ∈ Ψπ,σ(rτ ) the value
π(x + rτ ) − σ(x) is a multiple of mN .

Corollary 2 implies that an optimal k-set of generalized
Milewski sequences can be constructed if there exist both
(1) at least one optimal k-set of perfect sequences all of
period m with the same energy and (2) a k-set of functions
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Π = {π0, π1, . . . , πk−1} each of which is a function from ZN

to ZmN satisfying the following two properties: (i) for each
i, the values πi(x) (mod N) for x = 0, 1, . . . , N − 1 are all
distinct; and (ii) for any two distinct πi, πj ∈ Π,∣∣Ψπi,πj(rτ )

∣∣ = 1,

for each rτ = 0, 1, 2, . . . , N − 1.
Note that the k-set of functions Π = {π0, π1, . . . , πk−1}

above with two properties is equivalent to a circular Florentine
array of size k × N described at the end of Section II. With
an abuse of language, we just call such a set of functions a
circular Florentine array.

We first consider the simple case of using a trivial perfect
sequence {1} of length m = 1. Note that this sequence and
itself can be regarded as a (trivial) optimal pair of perfect
sequences of length 1. Then we can construct a k-set of
optimal sequences of length N2 whenever there exists a k×N
circular Florentine array Π = {π0, π1, . . . , πk−1} where each
πi is a permutation of ZN . Two examples of this case where
N = 15 and N = 27 are shown in Example 2 below.

Example 2: Let m = 1 and μμμ be the all-one sequence of
length N . And, consider the trivial perfect sequence {1}.

1) For N = 15, the author of [37] gave an example of a
circular Florentine array of size 4 × 15. By regarding
each row of it as a permutation, we have

π0 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
π1 = (0, 7, 1, 8, 2, 12, 3, 11, 9, 4, 13, 5, 14, 6, 10),
π2 = (0, 4, 11, 7, 10, 1, 13, 9, 5, 8, 3, 6, 2, 14, 12),
π3 = (0, 13, 7, 2, 11, 6, 14, 10, 3, 5, 12, 9, 1, 4, 8),

where πi = (a0, a1, . . .) denotes πi(j) = aj for all i, j.
Based on these four permutations, we obtain an opti-
mal set of four perfect polyphase sequences of period
152 = 225 by picking up a single perfect sequence from
each and every A ({1}, π0), A ({1}, π1), A ({1}, π2),
A ({1}, π3).

2) Using a 4×27 circular Florentine array in [37], one can
similarly construct an optimal set of 4 perfect sequences
of period 272 = 729.

Remark 4: Until now, polyphase is the only constellation
over which optimal sets have been constructed [30], [32], [34],
[41], [43], [44]. Herein, any known optimal perfect polyphase
sequence sets of period L is of size pmin − 1, where pmin is
the smallest prime factor of the period L. We would like to
emphasize that the optimal sets given in Example 2 are the
first example of optimal sets which are of size larger than
pmin − 1.

For m > 1, we need at least one k-set of optimal sequences
of length m in addition to a k × N circular Florentine array
in order to construct a k-set of optimal sequences of length
mN2. Consider simply the case of k = 2 here, and assume
that we have both (1) a pair of optimal sequences {βββ,γγγ} of
length m and the same energy EB and (2) a 2 × N circular
Florentine array Π = {π, σ}. Assume that π and σ have the
same range so that Corollary 2 can be applied. We describe
two different procedures of constructing a pair of sequences

sss ∈ A (B1, π) and fff ∈ A (B2, σ) of length mN2, where the
difference is the choice of B1 and B2 using the pair {βββ,γγγ}.

• (Simple and Constant Assignment). We let B1 have only
βββ and B2 have only γγγ. That is, we use βββ0 = βββ1 =
· · · = βββN−1 = βββ and γγγ0 = γγγ1 = · · · = γγγN−1 =
γγγ. Therefore, according to the notation in Remark 1,
we have sss ∈ A(βββ, π) and fff ∈ A(γγγ, σ). Note that in
this case we do not care for the sets Ψπ,σ(rτ ) at all for
rτ = 0, 1, 2, . . . , N − 1.

• (Other Assignment). We first have to determine the
unique value x ∈ Ψπ,σ(rτ ) for each rτ = 0, 1, 2, . . . ,
N −1. This gives N pairs (βββx+rτ , γγγx) all of which must
be optimal. Therefore, unlike the case above, we could
assign either (βββx+rτ , γγγx) = (βββ,γγγ) or (βββx+rτ , γγγx) =
(γγγ,βββ) independently (or randomly) for each rτ =
0, 1, 2, . . . , N − 1.

These various different procedures could be applied similarly
when k > 2. The following example is for the case where
k = 2 and m > 1.

Example 3: Let N = 5. Then, there exists a 4 × 5 circular
Florentine array given as

π1 = (0, 1, 2, 3, 4) ,

π2 = (0, 2, 4, 1, 3) ,

π3 = (0, 3, 1, 4, 2) ,

π4 = (0, 4, 3, 2, 1) . (16)

Any two of the above can be used in the following con-
struction for an optimal pair of perfect sequences of length
mN2 = 25m.

Let m = 3 and consider the following optimal pair of
sequences of length m = 3: βββ = {1, ω3, ω3}, and γγγ ={
1, ω2

3 , ω
2
3

}
. We choose a 2 × 5 circular Florentine array

Π = {π, σ} as π = π1 and σ = π2 from (16). Observe that
their ranges are the same. Then, for each rτ = 0, 1, 2, 3, 4,
the set Ψπ,σ(rτ ) contains 0, 1, 2, 3, 4, respectively. Therefore,
we have N = 5 optimal pairs:

(βββ0, γγγ0),
(βββ2, γγγ1),
(βββ4, γγγ2),
(βββ1, γγγ3),
(βββ3, γγγ4).

Now, the simple and constant assignment gives βββi = βββ and
γγγj = γγγ for all i and j. An alternative assignment would be,
for example,

(βββ0, γγγ0) = (βββ,γγγ),
(βββ2, γγγ1) = (γγγ,βββ),
(βββ4, γγγ2) = (γγγ,βββ),
(βββ1, γγγ3) = (βββ,γγγ),
(βββ3, γγγ4) = (βββ,γγγ).

Any of these procedures (assignments) will produce an
optimal pair of perfect sequences of length 75.

In Example 3, we have assumed that π and σ have the same
range so that Corollary 2 can be applied. Note that they can
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TABLE II

SOME EXAMPLES WHERE OM(L) > pmin − 1 = 2

still be permutations of ZN when reduced mod N , even if their
ranges over ZmN are different. In the case where the ranges
are different, one must be careful of applying the condition in
Theorem 3 (instead of those in Corollary 2).

Theorem 4: Let Fc(N) denote the largest integer such
that an Fc(N) × N circular Florentine array exists. Denote
by OGM(L) the maximum set size of optimal generalized
Milewski sequences of period L = mN2 constructed by
perfect sequences of period m.

1) If m = 1, then

OGM(mN2) = Fc(N).

2) If m ≥ 2, then

OGM(mN2) = min {OP(m),Fc(N)} ,

where OP(m) denotes the maximum set size of optimal
perfect sequences of period m.

Remark 5: A condition on optimal pairs of Zadoff-Chu
sequence was analyzed by Popovic [34]. It is known [34] that
the maximum size of optimal Zadoff-Chu sequence sets with
period m is pm − 1, where pm is the smallest prime factor of
m. As a consequence, there is no optimal pair of Zadoff-Chu
sequence if m is even.

By applying Remark 5 to Theorem 4, we get the following
corollary on optimal sets of generalized Milewski polyphase
sequences of length mN2 constructed by using Zadoff-Chu
sequences of square-free length m. It describes the maximum
possible size of optimal sets constructed by using any known
perfect polyphase sequences.

Corollary 3: Let OM(L) be the maximum size of optimal
sets of generalized Milewski polyphase sequences of length
L = mN2 constructed by using Zadoff-Chu sequences of
length m. When L = mN2 is even, OM(L) = 1, and hence,
there is no optimal pair of generalized Milewski polyphase
sequences of even length constructed by using Zadoff-Chu
sequences. When L = mN2 is odd, we have the following:

1) If m = 1, then

OM(mN2) = Fc(N).

2) If m ≥ 2, then

OM(mN2) = min {pm − 1,Fc(N)} .

where pm is the smallest prime factor of m.

Proof: The proof is obvious for odd mN2 because of
Theorem 4. Assume that the period L = mN2 is even, and
observe the following: (1) If m is even, then pm − 1 = 1, and
hence, there is no optimal pair of Zadoff-Chu sequences; (2)
If N is even, then Fc(N) = 1. [16]

By using the possible values of Fc(N) given in [37] and
pm−1 from Remark 5, we can find some cases where OM(L =
mN2) is larger than pmin − 1 by Cor. 3. Table II shows the
values of OM(L), Fc(N) and pm − 1, for various values of
L = mN2 for N = 15, 21, 29, 33 and 39. Recall that pm is
the smallest prime factor of m and that pmim is the smallest
prime factor of L = mN2.

IV. CONCLUDING REMARKS

Circular Florentine arrays and related combinatorial struc-
tures have been studied for more than 30 years to con-
struct sets of non-binary sequences which are optimal in
terms of Hamming correlation. They are closely related with
edge-decomposition of perfect direct graphs. It is extremely
interesting that this structure reappears as an ingredient of
constructing optimal sets of perfect sequences in terms of
complex correlation. It is all the more interesting to see that,
for even N , non-existence of a 2×N circular Florentine array
(proved in [16]) implies non-existence of an optimal pair of
generalized Milewski sequences of length mN2 for any m.

To obtain an optimal k-set of generalized Milewski
sequences of period mN2, it is required to have both a k×N
circular Florentine array and at least one optimal k-sets of
perfect sequences of period m. So, to construct large size
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Fig. 3. Two array representation of a generalized Milewski sequence of length mN2 constructed by using perfect sequences of length mN2
1 .

optimal sets of generalized Milewski sequences, the following
would be interesting:

• For a given integer N , what is the exact value of Fc(N)?
This is widely open for non-prime odd integers N except
for some small values.

• For a given integer m, what is the exact value of OP(m)?
This value is not known exactly for all m ≥ 2 but is
always greater than or equal to pm − 1, where pm is the
smallest prime factor of m. It is equal to pm − 1 when
the sequences are restricted to Zadoff-Chu sequences of
period m.

APPENDIX A
PROOF OF THEOREM 2

Before we begin the proof, we fix the following notation:
• N = N1N2 is a composite number.
• π is a function from ZN to ZmN such that π(x)

(mod N) is a permutation over ZN .
• σ is a function from ZN2 to ZmN2

1N2
such that σ(x)

(mod N2) is a permutation over ZN2 .
• κ0, κ1, …, κN1−1 are functions from ZN1 to ZmN1 such

that, for each b = 0, 1, . . . , N1 − 1, κb(x) (mod N1) is
a permutation over ZN1 .

1) To prove the first statement, let sss = I (S (G, σ,μμμ)) =
I (sss0, sss1, . . . , sssN2−1) be a generalized Milewski sequence
of period mN2, constructed by using a collection of
N2 perfect sequences of length mN2

1 , denoted by G =
{ggg0, ggg1, . . . , gggN2−1}. Here, the i-th column sequence sssi is

sssi =
{

gi(t)μ(i)ωtσ(i)

mN2
1N2

}mN2
1N2

t=0
.

The sequence sss can be written as two different arrays
in Fig. 3: (1) an mN2

1 N2×N2 array in which the r-th column
sequence is sssr and; (2) an mN × N array. For an integer l
with 0 ≤ l < N , write l = aN2 + b with 0 ≤ b < N2. Then,
the l-th column sequence of the second array form is

{sb (tN1 + a)}mN−1
t=0 ,

where

sb(tN1 + a) = gb(tN1 + a)μ′(b)ωtσ(b), (17)

and μ′(b) = μ(b)ωaσ(b)

mN2
1N2

.
Assume that gggb = I (S (Bb, κb, νννb)) is a generalized

Milewski sequence of length mN2
1 constructed by using

Bb = {γγγb,0, γγγb,1, …, γγγb,N1−1}, which is a collection of
N1 perfect sequences. Then, the sequence sss above becomes a
result of the two-step method. By the definition, we can write
the term gb(tN1 + a) in (17) as

gb(tN1 + a) = γb,a(t)νb(a)ωtκb(a)
mN1

(18)

After substituting (18) into (17), t-th term of the l-th column
sequence in the mN × N array form in Fig. 3 becomes, for
some μμμ′′ ∈ UN ,

sb(tN1 + a) = γb,a(t)μ′′(l)ωt[σ(b)+N2κb(a)]. (19)

Then, it is easy to see that we can obtain this sequence
from the direct method by letting a collection B of N perfect
sequences βββ0, βββ1, …, βββN−1 and the function π as follows:
(1) βl(t) = γb,a(t) and π(l) = σ(b) + N2κb(a).

2) For the second statement, it is enough to observe that, for
any composite number N , there always exists a permutation
over ZN which cannot be represented by the form

σ(b) + N2κb(a).

Note that this form is the exponent of ω in (19).
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