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In this paper, an algebraic construction of regular QC-LDPC codes by
using the modular multiplication table mod P and Golomb rulers are
proposed. It is proved that the proposed QC-LDPC codes based on a
Golomb ruler of length L have girth at least 8 if P > 2L. The error per-
formance of the proposed QC-LDPC codes are simulated with various
Golomb rulers. The proposed codes of length around 300 from the op-
timal 6-mark Golomb ruler have an additional coding gain of at least
0.1 dB over 5G NR LDPC codes, 0.5 dB over those given earlier by
others, both at FER 10−3. Some non-trivial techniques to increase the
length of a given Golomb ruler with and without an additional mark
for improving the performance of the codes from Golomb rulers up to
0.7 dB are also found.

Introduction: A Golomb ruler is a set of marks at integer positions along
a ruler such that no two pairs of marks are the same distance apart [1, 2].
It was first studied by Babcock to find solutions for selecting radio fre-
quencies to diminish the interference between communication channels
in 1953 [3], and was fully studied mathematically in terms of their con-
structions and applications [4] and many new applications in radioas-
tornomy [5], coding theory [6, 7], and sequences design [8].

Quasi-cyclic low-density parity-check (QC-LDPC) codes [9] are get-
ting more and more attention because of the simple encoding scheme
and parallel decoding. The QC-LDPC code C is an LDPC code such
that, for some fixed integer i dividing the code length, Ŝic ∈ C whenever
c ∈ C where Ŝ is the cyclic shift operator. It is a cyclic LDPC code when
i = 1. A typical description of a QC-LDPC code uses a parity-check ma-
trix which is partitioned by some circular permutation matrices (CPM)
of the same size [9].

The multiplication table methods for structured QC-LDPC codes
have been proposed in various different forms [9–16]. They follow
some universal scheme of first constructing an m × n exponent ma-
trix E = [e(i, j)] as a multiplication e(i, j) = e(i, 0)e(0, j) and then de-
termining the parity-check matrix H = [He(i, j)] by substituting some
appropriately-shifted CPM of size P into the position (i, j) of E for all
i, j. The resulting code is the null space of H, of length nP. The differ-
ences are (i) choice of the top-row and the left-most column sequences
of E so that some girth condition is satisfied and (ii) choice of the mul-
tiplication (ordinary or modular).

A universal condition to guarantee some girth of the proposed codes
is from ref. [9] or its variation (some sufficient conditions). Here, the two
sequences {e(i, 0)|i = 0, 1, . . . , m − 1} and {e(0, j)| j = 0, 1, . . . n − 1}
should satisfy the non-existence condition [9] of a 2c-cycle in the Tanner
graph of H:

c−1∑

l=0

(e(il , 0)e(0, jl ) − e(il , 0)e(0, jl+1)) �≡ 0 (mod P)

for all i0, i1, . . . , ic−1 and j0, j1, . . . , jc = j0 such that il �= il+1 and jl �=
jl+1 for 0 ≤ l < c.

A greatest common divisor (GCD) constraint on the finite integer
sequences is one sufficient condition that guarantees the girth-8 when
the sequence with GCD constraint is used as top-row of E and the left-
most column is given as {0, 1, . . . , m − 1} [12]. A 3-free-set condition
is another such condition [15]. It is known that any 3-free-set condition
implies the GCD constraints but not conversely [15]. These two con-
structions [12, 15] have the properties that (i) the left-most columns are
{0, 1, . . . , m − 1} and the top-rows are either the sequences with GCD
constraints or 3-free-set condition in order to guarantee the girth-8 prop-
erty and (ii) multiplication is ordinary and hence the CPM size is deter-
mined by the largest element in E. On the other hand, in ref. [16], (i) they

have to search for the top-row integer sequence that satisfies the condi-
tion from ref. [9] and then (ii) the multiplication is modular. All three
constructions have to search for the top-row sequences to guarantee the
girth-8 property in some exhaustive ways.

A set of positive integers {g1, g2, . . . , gn} where g1 < g2 < . . . < gn

is called a Golomb ruler if the differences g j − gi’s, for i < j, are all
distinct [2]. Usually, the first mark is placed in position g1 = 0. In
this case, the length of the ruler is equal to the maximum difference,
L = gn − g1 = gn. An optimal Golomb ruler is the Golomb ruler of the
smallest possible length when the number of marks is fixed to be n. We
note that all distinct differences g j − gi’s implies that g j − gi �= gk − g j

for any gi < g j < gk . Therefore, a Golomb ruler is always a 3-free set,
but not conversely.

In this paper, we propose an algebraic construction of regular QC-
LDPC codes by using the modular multiplication table mod P and
Golomb rulers. The multiplication is done mod P and hence we prove
that P > 2L guarantees the girth-8 property, where L is the length of the
Golomb ruler. We simulate the error performance of the proposed QC-
LDPC codes with various Golomb rulers. The proposed codes of length
around 300 from the optimal 6-mark Golomb ruler have an additional
coding gain of 0.1 dB over those from 5G NR LDPC code [17], 0.5 dB
over those from ref. [13] and at least 2.0 dB over those from ref. [15], all
at FER 10−3. We also find some non-trivial techniques to increase the
length of a given Golomb ruler with and without an additional mark for
improving the performance of the codes up to 0.7 dB.

Properties of Golomb rulers: We will describe some techniques of get-
ting a new Golomb ruler from any given one. The proposed construction
in this paper will use any Golomb ruler regardless of its optimality. We
note that when {g1, g2, . . . , gn} is an n-mark Golomb ruler, any subset
of size m ≤ n is also an m-mark Golomb ruler.

Theorem 1. Let {g1, g2, . . . , gn−1, gn} be an n-mark Golomb ruler.
Then, {g1, g2, . . . , gn−1, g} is also an n-mark Golomb ruler if g > 2gn−1.

Proof. To prove that {g1, g2, . . . , gn−1, g} is an n-mark Golomb ruler,
we have to check the differences with g and gi for 1 ≤ i ≤ n − 1, since
{g1, g2, . . . , gn−1} is an (n − 1)-mark Golomb ruler. If g − gi = g − g j

for some i �= j, then gi = g j , which is impossible. If g − gi = g j − gk

for some j > k and some i, then g = gi + g j − gk ≤ gi + g j ≤ 2gn−1,
which is impossible since g > 2gn−1. �

Construction of QC-LDPC codes using Golomb ruler: We will de-
scribe the main construction and the proof that it gives a girth-8 QC-
LDPC code.

Main construction:
(Step 1) Choose an n-mark Golomb ruler b = (b0, b1, . . . , bn−1) of

length L = bn−1 − b0, where n > 3.
(Step 2) Construct a 3 × n exponent matrix E = [e(i, j)] where

e(i, j) = ib j (mod P) for i = 1, 2, 3 and j = 0, 1, . . . n − 1, where P >

2L. The integer e(i, j) must be in the range 0 ≤ e(i, j) ≤ P − 1.
(Step 3) Finally construct the parity-check matrix H = [He(i, j)] by

substituting an appropriate CPM of size P. For the position (i, j), the
appropriate CPM is the identity matrix of size P circularly shifted by
e(i, j).

The binary QC-LDPC code from main construction is the null space
of the parity-check matrix H. The length becomes nP and the code rate
is at least (n − 3)/n. We want to check whether the proposed QC-LDPC
codes have girth-8 or not.

Theorem 2. The QC-LDPC codes from main construction have girth-8
if P > 2L, where P is the modulus in the construction of the exponent
matrix as in (Step 2) and L is the length the Golomb ruler.

Proof. We have to show that the Tanner graph of H = [He(i, j)] from
main construction does not have 4-cycles and 6-cycles. Main construc-
tion uses the multiplication table method with left-most column (1,2,3)
and the top-row b = (b0, b1, . . . , bn−1) for the exponent matrix E =
[e(i, j)]. It is easy to see from the non-existence condition in Introduc-
tion that there is no 4-cycle if bi − b j �= 0 (mod P) and 2(bi − b j ) �= 0
(mod P) for all 0 ≤ i �= j < n. Since the length of the Golomb ruler is
L, we have −L ≤ bi − b j ≤ L for any i �= j. Therefore, the condition is
satisfied since P > 2L.
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Table 1. Golomb rulers [2] and CPM size P in main construction

# marks Golomb rulers L P

4 (0,1,4,6) 6 P > 12

5 (0,1,4,9,11) 11 P > 22

(0,2,7,8,11)

6 (0,1,4,10,12,17) 17 P > 34

(0,1,4,10,15,17)

(0,1,8,11,13,17)

(0,1,8,12,14,17)

7 (0,1,4,10,18,23,25) 25 P > 50

(0,1,7,11,20,23,25)

(0,1,11,16,19,23,25)

(0,2,3,10,16,21,25)

(0,2,7,13,21,22,25)

Now, consider the case of 6-cycles. The non-existence condition for
6-cycles can be rewritten as

(2 − 1)bi − (3 − 1)b j + (3 − 2)bk �= 0 (mod P)

or

bi − b j �= b j − bk (mod P),

for any three distinct indices i, j and k. Since the length of the Golomb
ruler is L, the difference bi − b j for any i �= j is in the range between
−L and L, and these differences (bi − b j )’s for all i �= j are all distinct.
Therefore, the condition is satisfied since P > 2L. �

It is noticed that one can add a constant to the left-most column or
to the top-row of the multiplication table in main construction without
changing the girth-8 property.

Therefore, one can use (i, i + 1, i + 2) instead of (1,2,3) for the left-
most column, and similarly, one can use (b0 + j, b1 + j, . . . , bn−1 + j)
for the top-row of the multiplication table, for any integers i and j.

Table 1 shows that the n-mark optimal Golomb rulers and correspond-
ing CPM sizes of girth-8 QC-LDPC codes from main construction. In
the table, we present only the optimal Golomb rulers whose number of
marks are between 4 and 7 [2]. According to ref. [1], the researchers
found optimal Golomb rulers up to 27 marks.

From any n-mark Golomb ruler, one can find the smaller number of
mark ruler by taking its subset. For example, let us consider the 7-mark
Golomb ruler in Table 1. It gives the QC-LDPC code of length 7P and of
rate 4/7. By taking its subsets for 6-marks, 5-marks, and 4-marks, one
can construct QC-LDPC codes of lengths 6P, 5P, and 4P and of rates
3/6, 2/5, and 1/4, respectively.

Performance of QC-LDPC codes from main construction with various
Golomb rulers: We now analyse the performance of the proposed girth-
8 QC-LDPC codes from main construction using sum-product decod-
ing and max 50 iterations under the assumption of AWGN channel and
BPSK modulation.

Fig. 1 shows the FER performance of the proposed half-rate codes
of length 6P = 312 from two different 6-mark Golomb rulers: one is an
optimal 6-mark Golomb ruler and the other is a subset of size 6 from the
7-mark Golomb ruler both in Table 1. Note that P = 52 > 2L for using
the Golomb ruler of length L so that both codes have girth-8. For com-
parison, we select three other half-rate QC-LDPC codes: 5G NR LDPC
code of length 308 [17], the code by symmetrical construction [13] and
the code from the 3-free set (0,2,3,7,8,10) [15]. The two proposed codes
have almost the same performance. They have an additional coding gain
of about 0.1 dB over 5G NR LDPC code, 0.5 dB over the code from [13],
and more than 2.0 dB over the code from ref. [15], all at FER 10−3.

We also simulated the FER performance of all the codes from five
different 7-mark optimal Golomb rulers in Table 1 of length 7P = 357

Fig. 1 Performance comparison of various half-rate codes

Fig. 2 Performance of the codes using four 6-mark Golomb rulers

and of rate 4/7. It turned out that their performances are very much the
same. Here, the size P = 51 is used.

In general, one can use the (n − 1)-mark Golomb ruler obtained from
n-mark one by taking a subset of size n − 1. There are n ways of doing
this. We check the case n = 7 and some extensive computing simulations
show that all they have some similar performance.

Given an n-mark Golomb ruler, one can obtain many others of longer
length by Theorem 1. The longer ones obtained by Theorem 1 are further
away from the optimal Golomb ruler, but they construct the QC-LDPC
codes with the same length nP.

In the hope of improving the performance, we simulate four half-rate
codes from 6-mark Golomb rulers. The result is shown in Fig. 2.

We take the last optimal 6-mark Golomb ruler of length 17 in Table 1:
(0, 1, 8, 12, 14, 17). From Theorem 1, we change the last mark 17 to
30, 60, and 99 to obtain longer length 6-mark rulers of lengths 30, 60,
and 99, respectively. We use the CPM size P = 200 so that the code
length is 1200 and the rate 3/6.

The QC-LDPC codes using the ruler of length 60 shows the best per-
formance among them. This code has an additional coding gain about
0.7 dB at FER 10−3 over those using the optimal ruler of length 17.

This shows an interesting trend of performance of the codes from
the n-mark rulers when the last mark gn increases. The performance in-
creases as gn increases up to some threshold value g∗ and then decreases
as the value gn further increases beyond g∗. We now propose an inter-
esting open problem: given an n-mark (optimal) Golomb ruler of length
L = gn, find the value g∗ for the final mark gn so that the performance
of the code from main construction using the n-mark Golomb ruler of
length g∗ is the best.
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Concluding remarks: In this paper, we propose an algebraic construc-
tion of regular QC-LDPC codes by using the modular multiplication ta-
ble mod P and Golomb rulers. We prove that the proposed QC-LDPC
codes based on a Golomb ruler of length L have girth at least 8 if
P > 2L. We also proposed some deterministic ways to make some n-
mark Golomb rulers (and also n + 1-mark Golomb rulers) from a given
n-mark Golomb ruler without any exhaustive search.

One interesting open problem is to find a new final mark g∗ of a given
n-mark optimal Golomb ruler so that the performance of the proposed
QC-LDPC code is best. We currently do not have any idea except that it
must be a function of the modulus P since 2g∗ < P must be satisfied for
the girth-8 property.

One final comment on the relation between the Golomb rulers and
the 3-free sets. Every Golomb ruler is a 3-free set but not conversely.
For example, a 3-free set (0,2,3,7,8,10) fails to be a Golomb ruler by
the relations; 3 − 2 = 8 − 7 of four different terms 2,3,7,8; or 2 − 0 =
10 − 8 of another four terms 0,2,8,10; and many more. It may require
further research for any theoretical support but now we just guess that
the existence or non-existence of such violations in 3-free sets makes
performance difference between the codes from 3-free sets and from
Golomb rulers.
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