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Optimal 5-Seq LRCs With Availability From
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Abstract— In this paper, we propose a simple construction
for binary (n, k) linear codes using s-mark Golomb rulers.
We prove that these codes are sequential-recovery locally
repairable codes (LRCs) with availability 2, which can sequen-
tially recover 5 erased symbols. We prove the necessary and
sufficient condition for the proposed codes to be rate-optimal.
We also prove the necessary and sufficient condition for the
proposed codes to be dimension-optimal. Finally, we propose
some variations of this constructions to obtain some 5-sequential
recovery LRCs with availability 3. The proposed codes have
higher rates and have more flexible choice for the lengths than
other previously reported constructions.

Index Terms— Locally repairable codes, sequential recovery,
Golomb rulers, cyclic planar difference sets.

I. INTRODUCTION

TO STABLY store big data in distributed storage systems
(DSSs) and to increase their reliability, locally repairable

codes (LRCs) that repair a single node failure with only a
small number of nodes have been proposed by Gopalan et al.
[15], [25]. The LRCs with length n, dimension k, and locality
r is denoted as an (n, k, r)-LRC. An important parameter for
LRCs is the locality r [15], [22], [25], which is the minimum
number of symbols in the codeword required to repair a single
erasure symbol. If each symbol has locality at most r, then
the code is said to have the locality r.

For multiple erasures, one refers to the parallel-recovery or
sequential-recovery LRCs, depending on whether the process
of recovering multiple erasures is simultaneously parallel or
sequentially one by one.

Parallel-recovery LRCs have been extensively studied in
various types, including LRCs with joint locality [22], LRCs
with cooperative locality [30], and LRCs with availabil-
ity [31], [38], [39], [41], [42], [43]. Let C be an (n, k)
linear code and c = (c0, c1, . . . , cn−1) ∈ C. Then C is said
to be an (n, k, r)-LRC with availability t if, for each i ∈
{0, 1, . . . , n− 1}, there exist at least t pairwise disjoint repair
sets R1(i), R2(i), . . . , Rt(i) ⊆ {0, 1, . . . , n−1}\{i}, such that
for each j = 1, 2, . . . , t, we have (i) |Rj(i)| ≤ r, (ii) the sym-
bol ci is a linear combination of cl’s for l ∈ Rj(i). The concept
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of availability is used for ‘hot data’ that needs to be repaired
frequently. By definition, an LRC with availability can repair
a single erasure using multiple disjoint repair sets, and hence
it can also repair multiple erasures in parallel. Note that the
LRC has availability t ≥ 2 implies t parallel recovery process
is possible for any single erasure of the code. However, t-
parallel-recovery LRC does not necessarily have availability t.

Sequential recovery means that erased symbols are recov-
ered sequentially one by one, and some previously recovered
symbols can also be used to recover the remaining erased sym-
bols. In contrast to the extensively studied parallel-recovery
LRCs, this important method has only recently received sig-
nificant attention. Sequential-recovery LRC was first proposed
by Prakash et al. [27]. Let C be an (n, k) linear code, c =
(c0, c1, . . . , cn−1) ∈ C and u be a positive integer. Then C is
said to be a u-sequential-recovery LRC (u-seq LRC) if there
exists a sequential arrangement (i0, i1, . . . , iu−1) for any u
erased positions such that, for each l = 0, 1, . . . , u− 1, there
is a subset Rl ⊂ {0, 1, . . . , n − 1} satisfying (i) il ∈ Rl and
|Rl| ≤ r + 1, (ii) Rl ∩ {il+1, il+2, . . . , iu−1} = ∅ and (iii)
the symbol cil

is a linear combination of cj’s for j ∈ Rl \ il.
One important metric for u-seq LRCs is a repair time, which
defines the maximum number of steps required to repair u
erasures [36], [42]. In general, u-seq LRC repairs multiple
erasures sequentially one by one, so the repair time is at most
u. Designing u-seq LRCs with the repair time less than u is
a challenging problem.

The u-seq LRCs for u = 2 or 3 have been extensively stud-
ied in [3], [7], [17], [26], [34], and [35]. Prakash et al. [26]
established upper bounds on the code rate and minimum dis-
tance for 2-seq LRCs and proposed graph-based constructions
that achieve these bounds. Jing and Song [17] constructed
2-seq LRCs that are either rate-optimal or distance-optimal,
based on good polynomials for relatively small alphabets. For
3-seq LRCs, Balaji et al. [3] proposed some general construc-
tions with short block lengths, as well as a bound on the block
length. Subsequently, Song et al. [34] were the first to derive
a tight upper bound on the code rate for any 3-seq LRC and
proposed rate-optimal constructions based on resolvable con-
figurations. In [7], the upper bound for dimension k of some
3-seq LRCs with availability 2 was established. Additionally,
in [35], a length bound for 3-seq LRCs was proposed and the
existence of LRCs that achieve this bound was also discussed.

Some results on u-seq LRCs for some larger u have been
reported in [2], [3], [18], [36], and [42]. Balaji et al. [3]
constructed high-rate u-seq LRCs for u = 4, 5, 6, 7 with r =
2 that approach the rate bound. The case for u = 5 is further
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reviewed in Section IV. Song and Yuen [36] constructed
(2m−1)-seq LRCs that is equivalent to the direct product of m
copies of the single-parity-check code. These constructions do
not achieve the rate bound for general u-seq LRCs established
later. Subsequently, Balaji et al. [2] derived upper bounds on
the code rate and dimension for u-seq LRCs for any u and
r ≥ 3 as follows:

k

n
≤ rσ+1

rσ+1 + 2
∑σ

i=1 ri + (u− 2σ)
, (1)

k ≤
⌊

nrσ+1

rσ+1 + 2
∑σ

i=1 ri + (u− 2σ)

⌋
, (2)

where σ ≜ ⌊u−1
2 ⌋. Here, the authors designed rate-optimal

binary u-seq LRCs that achieve the bound (1) by using the
incidence matrix of a tree-like graph with girth ≥ u + 1. The
detailed construction for u = 5 is also reviewed in Section IV.

An u-seq LRC that achieves the bound (1) with equality
is defined to be a rate-optimal code [2]. It is well-known [2]
that the bound cannot be achieved when the code length n is
not a multiple of the denominator of RHS of (1). In this case,
the focus shifts to achieving the bound given in (2). An u-seq
LRC of length n that achieves the bound (2) with equality is
defined to be a dimension-optimal code [2]. We note that a
rate-optimal u-seq LRC is always dimension-optimal, but not
conversely. That is, a dimension-optimal u-seq LRC is not
always rate-optimal.

Yavari and Esmaeili [42] constructed u-seq LRCs with
availability t (u ≥ t) and introduced the concept of joint
sequential-parallel recovery LRCs, which uses availability to
recover some erased symbols simultaneously. This concept is
aimed at reducing repair time, making the recovery process
more efficient. By introducing this concept, u-seq LRCs with
availability t can recover t symbols simultaneously, while
the remaining u − t symbols can be sequentially recovered,
resulting in a repair time of at most u−t+1. The construction
for u = 5 here is also reviewed in Section IV.

In this paper, we will design 5-sequential-recovery LRCs
with availability 2 or 3 using Golomb rulers. Our main
contributions are the following:

• We propose some new constructions for 5-seq LRCs with
availability 2 using Golomb rulers. When the length of the
code is sM for some parameters s and M , the dimension
of the code is determined to be sM−2M +1. The repair
time of this code is at most 3 due to the availability 2.

• We prove the necessary and sufficient conditions for
obtaining rate-optimal LRCs in the proposed construc-
tion.

• We prove the necessary and sufficient conditions for
obtaining dimension-optimal LRCs in the proposed con-
struction.

• We propose 5-seq LRCs with availability 3 as a variation
of the above. The repair time of this code is at most 2.

Section II provides some preliminary background informa-
tion. Four main results above are discussed in Section III and
it has four subsections described as above. Finally, Section IV,
we conclude the paper by comparing the constructions with
those in [2], [3], and [42] as a table.

II. PRELIMINARIES

A set of integers G = {g1 < g2 < · · · < gs} is called an
s-mark Golomb ruler if the differences gj − gi for i < j are
all distinct [5], [10], [11], [12], [14], [23], [29], [32], [36].
Subtracting g1 from all the gi(1 ≤ i ≤ s) above gives also an
s-mark Golomb ruler, and we may assume that g1 = 0 in this
paper.

We denote an s-mark Golomb ruler G by a strictly increas-
ing integer sequence 0 = g1 < g2 < · · · < gs and also denote
the set of positive distances of all the mark-pairs of G by

D = {gj − gi|i < j}. (3)

Note that |D| = s(s− 1)/2.
Our main theorem essentially constructs a parity check

matrix H of a Quasi-Cyclic Low Density Parity Check (QC-
LDPC) code with some interesting properties which lead to
the conclusion that it is indeed a parity check matrix of a
u-seq LRC. The interesting such relation was recently found
in [18] and quoted as:

Known-fact 1: [18]
1) A linear block code is a u-seq LRC with locality r if its

parity check matrix satisfies the following:
(i) the girth is 2(u + 1).

(ii) the column weight is at least 2, and
(iii) the row weight is at most r + 1.

2) The repair time of this u-seq LRC is at most ⌈u/2⌉.
Tanner graph of a parity check matrix H or Tanner graph

representation of H is a bipartite graph consisting of check
nodes and variable nodes corresponding to rows and columns
of H respectively, and a check node and a variable node is
connected if and only if the corresponding row and column
intersect with the value 1 in H [13], [18]. In Tanner graph,
a cycle is a closed path and 2α-cycle is a cycle of length 2α.
The length of a cycle is the total number of edges consisting
of the cycle. In a bipartite graph, any cycle must have an even
length. The girth of a Tanner graph is the minimum integer Γ
such that Γ-cycle exists in the graph [13], [18].

As a method for constructing a parity check matrix for QC-
LDPC codes, the approach based on the exponent matrix was
introduced in [13] and used a lot, for example, in [19], [20],
and [21].

Construct an integer matrix E = [e(i, j)], called an expo-
nent matrix. Then the parity check matrix H is constructed
by replacing each entry of E with an appropriate Circular
Permutation Matrix (CPM) of fixed size M × M . For the
position (i, j) in E, the appropriate CPM is the M×M binary
identity matrix with its columns circularly shifted to the left
by e(i, j). The direction of the shift does not matter much, but
for clarity and simplicity, we will fix it to the LEFT in this
paper. We will always consider this type of H matrix in this
paper.

An interesting relation between the girth of the resulting
QC-LDPC code and some structural properties of E is given
in [13]. We quote this as:

Known-fact 2: [13]
1) If a 2α-cycle exists in the Tanner graph of H matrix

based on an exponent matrix E = [e(i, j)] and CPMs,
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then
α−1∑
l=0

(e(il, jl)− e(il, jl+1)) ≡ 0 (mod M) (4)

for some i0, i1, . . . , iα−1 and j0, j1, . . . , jα = j0 such
that il ̸= il+1 for 0 ≤ l < α − 1 and jl ̸= jl+1 for
0 ≤ l < α.

2) When the exponent matrix E has only 2 rows, the girth
of H must be a multiple of 4.

Consider a binary vector h = (h1, h2, . . . , hn) of length n.
The supp(h) is defined to be a subset of {1, 2, . . . , n} such
that i ∈ supp(h) if and only if hi ̸= 0 [26]. Given an LRC with
its parity check matrix H , any row vector h of H determines a
repair group of the symbols in codewords as a subset supp(h)
of {1, 2, . . . , n}, whose size is equal to the weight of h [25].
If all these repair groups by the rows of H are pairwise disjoint
and their union becomes {1, 2, . . . , n}, the LRC is said to have
disjoint (local) repair groups [7], [24], [37], [40].

In fact, in the parity check matrix H constructed from a
1 × s exponent matrix and various CPMs substituted as in
the previous paragraph, the repair groups corresponding to
the rows of H are pairwise disjoint, and the union of their
column indices must become {1, 2, . . . , n}. Proposition 1 gives
a necessary and sufficient condition for the LRC with H based
on the t × s exponent matrix and various CPMs substituted
will have availability t.

Proposition 1: Let t ≥ 2 be an integer. Assume that we
have t distinct parity check matrices Hi, for i = 1, 2, . . . , t,
all of size M × (r + 1)M with M ≥ r + 1. Assume that each
Hi has disjoint repair groups of the constant size r +1. Then,
the linear code C with the parity check matrix given as follows
which is the intersection of constituent codes corresponding to
Hi (1 ≤ i ≤ t):

H =


H1

H2

...
Ht

 (5)

of size tM × (r + 1)M has availability t if and only if

|supp(hi) ∩ supp(hj)| ≤ 1 (6)

where hi and hj are two distinct row vectors of H .
Proof: Recall that each Hi determines M disjoint repair

groups all of constant size r+1, and that every column of Hi

has weight 1. Therefore, every column of H has weight t.
For sufficiency, let v ∈ {1, 2, . . . , n} and we pick up the

v-th column of H of weight t. Here, we use row indices
h1, h2, . . . , ht for these t 1’s in this column. If the condition
in (6) is satisfied, then supp(hi) ∩ supp(hj) = {v} for
i, j ∈ {1, 2, . . . , t}. This gives the availability t for the symbol
cv . The necessary condition is easy and straightforward.

It is known [7] that when H consists of H1 and H2, the
code with H becomes a 3-seq LRC with availability 2 even
if its individual constituent code with Hi is a (1-seq) LRC.

In this paper, our main construction in Section III demon-
strates that such a code becomes a 5-seq LRC with
availability 2 when H1 and H2 are appropriately selected using

Golomb rulers. Furthermore, these 5-seq LRCs can achieve
rate-optimality in certain constructions, and with availability 2,
they can reduce the repair time for 5 erased symbols to at most
3. Additionally, we will apply this proposition for t = 3 in
Section IV to construct 5-seq LRCs with availability 3.

III. SOME NEW CONSTRUCTIONS AND RATE-OPTIMALITY

A. Main Construction

Theorem 1: Let s ≥ 3 be an integer and G = {g1 =
0, g2, . . . , gs} with 0 = g1 < g2 < · · · < gs be an s-mark
Golomb ruler and D = {gj − gi|i < j}. Let E be the 2 × s
integer matrix of the form

E = (e(i, j)) =

(
0 0 0 · · · 0
0 g2 g3 · · · gs

)
, (7)

where i = 0, 1, j = 0, 1, . . . , s − 1. Now, construct a binary
2M × sM matrix H by substituting a circular permutation
matrix (CPM) of size M × M into the position (i, j) of E
for all i, j. Here, each CPM for the position (i, j) is obtained
by taking the circular left-shift of the columns of the identity
matrix by the integer e(i, j).

Then, H becomes a parity check matrix of a binary linear
(n, k) code with length n = sM and dimension k = sM −
2M + 1. Furthermore, this binary linear (n, k) code becomes
a 5-seq LRC with availability 2, locality r = s − 1 and the
repair time at most 3, provided that the positive integer M
satisfies the following three conditions:

(M1) gi ̸≡ gj (mod M) for all i ̸= j;
(M2) d+ d′ ̸≡ 0 (mod M) for all d, d′ ∈ D where d and d′

are not necessarily distinct members of D; and
(M3) all the members of D and M are collectively relatively

prime.
Proof: Let I be the M ×M identity matrix and I(λ) be

the λ-shifted version of I circularly to the left by the integer
λ. The matrix H in the theorem becomes

H =
(

I I · · · I
I I(g2) · · · I(gs)

)
, (8)

which defines a binary linear (n, k) code with length n = sM
and dimension k ≥ sM − 2M .

Now, we first prove the dimension k = sM − 2M + 1 of
this linear code by using M3 to show that rank(H) = 2M−1.

To prove this, we first observe that all the rows of H sum
to the zero vector and hence the 2M rows of H are not
linearly independent. This implies that the maximum number
of independent rows is at most 2M−1, or rank(H) ≤ 2M−1.
This also implies that the top row is the sum of the remaining
2M − 1 rows of H . Next, we claim that,

Main Claim: the top row of H cannot be made by
less than the remaining 2M − 1 rows of H .

This implies that we need at least these 2M − 1 rows of H
(except for the top row) to span the row space of H . Therefore,
rank(H) ≥ 2M − 1.

To prove the main claim, we first shuffle the columns of
H so that all the 1’s at the top row appear in the left-most s
positions. We then shuffle the remaining (s− 1)M right-most
columns of H so that all the 1’s at the next row appear in the
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Fig. 1. Patterns of 4-cycle and 8-cycle.

positions s, s+1, . . . , 2s−1. We repeat this for the remaining
columns of H so that all the 1’s appear in the next s columns,
and finally arrive at the following form, in which the result
contains M groups of columns in which 1 repeats s times in
the successive rows of the upper half. We call this H ′ in the
following:

H ′ =



1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0

. . .
0 · · · 0 0 · · · 0 1 · · · 1
1 1

1 1
1 1

· · · · · · · · · · · ·
1

1 1


. (9)

For simplicity, denote by 0, 1, 2, . . . ,M −1 the row indices
of the lower half of H ′ in (9). The lower half of H ′

is now partitioned into M column groups each consisting
of s columns. Here, the column group indices also use
0, 1, 2, . . . ,M − 1.

We now observe that the left-most s columns in the lower
half of H ′ contain 1’s in exactly the rows indexed by G =
{g1, g2, . . . , gs}. This is a simple and direct consequence of
using various CPMs in (8) which are some circularly left-
shifted versions of the M×M identity matrix. We furthermore
observe that the j-th column group (of s columns), for j =
0, 1, . . . ,M − 1, has 1’s in the rows indexed by the set G + j
(mod M). Recall the definition of D of G in (3). We now
claim that, for any given d ∈ D, row indices of two column
groups which are d apart has some intersections of row indices:

(G + j) ∩ (G + j + d) ̸= ϕ for any j and d ∈ D. (10)

If d ∈ D then d = gk−gl for some l < k, and hence, G+j+d
contains (for i = 1, 2, . . . , s) gi + j + d = gi + j + (gk − gl)
which becomes gk + j ∈ G + j when i = l.

Now we try to make the top row by adding some remaining
rows of H ′. Since the top row has 1’s only in all the columns
of the left-most (0-th) column group, we have to add all the

rows in the lower half indexed by G. Observe now that these
rows indexed by G in the lower half of H ′ may have 1’s
in other positions (of different column groups). From (10),
we see that for any d ∈ D, the d-th column group has 1’s in
the rows indexed by G+d and the intersection of G and G+d
is non-empty. To make the top row, this 1 must be cancelled
by adding the corresponding row (d-th row) in the upper half
of H ′, which forces to add all the s rows in the lower half of
H ′ indexed by G + d (mod M).

We repeat this process and conclude that, if d′ ∈ D, then
(G + d) ∩ (G + d + d′) ̸= ϕ, and hence, we have to add
d + d′-th row in the upper half and also all the rows in the
lower half indexed by G + d + d′. We may have to continue
this process indefinitely, and we have to add the rows in the
lower half indexed by G, G + d, G + d + d′, G + d + d′+ d′′,
. . . for all d, d′, d′′, . . . ∈ D as well as the rows in the upper
half indexed by d, d + d′, d + d′ + d′′, . . .. It is now sufficient
for Main Claim to confirm that the sequence

0, d, d + d′, d + d′ + d′′, . . . (mod M)

contains all the residues (indices) 0, 1, 2, . . . ,M − 1
(mod M), where d, d′, d′′, . . . are not necessarily distinct
in D. This is equivalent to the fact that any member in
{0, 1, 2, . . . ,M − 1} is an integer linear combination mod M
of the members in D, which comes from the condition M3.

Now we prove that this binary (n, k) code defined by
H in (8) is an LRC with prescribed properties using the
conditions M1 and M2.

We first show that the code is a 5-seq LRC. Observe that
every column of H has weight 2 and every row has weight
s = r + 1. From Known-fact 1, therefore, it is sufficient to
show that H has girth at least 12. Also, the LRC having this
H as a parity check matrix becomes a 5-seq LRC with repair
time of at most 3 by Known-fact 1.

Now, we claim that the girth is at least 12. We first observe
that the 6-cycle and 10-cycle cannot occur in the Tanner
graph (bi-partite graph) representation of the matrix H from
2) in Known-fact 2. Therefore, we only need to rule out the
existence of 4- and 8-cycles.

By 1) in Known-fact 2, the cycles in H defined from the
exponent matrix E can be analysed as the cycle patterns of E
as shown in Fig. 1. It shows the unique pattern of 4-cycles in
(a) and all possible (distinct) patterns of 8-cycles in (b).

We first consider the 4-cycle pattern (a) in Figure 1. We see
that the existence of the pattern (a) implies that, when two
blocks correspond to I(gi) and I(gj), we have the situation
shown below in the exponent matrix E:

j0 = j2 j1
i0 = 0 · · · 0 · · · 0 · · ·
i1 = 1 · · · gi · · · gj · · ·

Therefore, from (4) with α = 2, we have

e(i0, j0)− e(i0, j1) + e(i1, j1)− e(i1, j0)
≡ gj − gi

≡ 0 (mod M),

which is impossible, since M and G satisfy M1.
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Now, we consider all the 8-cycle patterns in (b) of Fig. 1.
The existence of a pattern in (b), for example, the very first
one in (b), implies that, when three blocks correspond to I(gi),
I(gj) and I(gk), we have the situation shown below in the
exponent matrix E:

j0 = j2 = j4 j3 j1
i0 = i2 = 0 · · · 0 · · · 0 · · · 0 · · ·
i1 = i3 = 1 · · · gi · · · gj · · · gk · · ·

Therefore, from (4) with α = 4 we have

(gk − gi) + (gj − gi) ≡ 0 (mod M),

which is impossible, since M and G satisfy M2. All other
remaining cases of the 8-cycle patterns in (b) of Fig. 1 can be
ruled out similarly, by the condition M2. This proves that H
has girth at least 12.

Now we have confirmed that the girth of H is 12, and hence,
there are no 4-cycles. Consequently, the availability t = 2 is
guaranteed.

Corollary 1: Let s ≥ 3 be an integer and G = {g1 =
0, g2, . . . , gs} with 0 = g1 < g2 < · · · < gs be an s-mark
Golomb ruler and D = {gj − gi|i < j}. Assume that an
integer M satisfies three conditions mentioned in Theorem 1.
Following variations of the construction in Theorem 1 are
possible and they all result in a 5-seq LRC with the same
parameter (n = sM, k = sM − 2M + 1, r = s− 1, t = 2).

1) Constant addition to the first row of E in (7).
2) Constant addition to the second row of E in (7).
3) Constant multiplication to the second row of E in (7).

Here, the constant must be relatively prime to M .
4) The first row of E in (7) is added by the Golomb ruler

g1, g2, . . . , gs and the second row is multiplied by a
constant y where y − 1 is relatively prime to M .

Proof:

1) When some positive constant c is added to the first row,
the resulting new exponent matrix becomes the following:(

c c c · · · c

0 g2 g3 · · · gs

)
.

Since the second row G is unchanged, we use the same
integer M satisfying the three conditions. Then, the
resulting parity check matrix becomes the following:(

I(c) I(c) · · · I(c)

I I(g2) · · · I(gs)

)
.

Now, it is obvious that the remaining proof works the the
same as the proof of Theorem 1. Similarly, for the case
of a negative constant c.

2) New second row is the same Golomb ruler except that
marks are shifted by the constant. Therefore, the same
integer M can be used for the construction and the
remaining proof works the same.

3) This construction is the same as that in Theorem 1
with the Golomb ruler G′ = {xg1, xg2, . . . , xgs} in (8).
Therefore, the set D′ of positive distances is xD where
G = {g1, g2, . . . , gs} with D. We now have to check
whether the parameter M for G satisfying M1, M2

and M3 also satisfies these three conditions for the
new Golomb ruler G′ = xG with D′ = xD. This is
straightforward and the remaining part of the proof works
the same.

4) Consider the exponent matrix of the following form:(
0 0 0 · · · 0
0 (y − 1)g2 (y − 1)g3 · · · (y − 1)gs

)
.

Here, the second row is a Golomb ruler since y − 1 is
relatively prime to M . Therefore, we may use the same
integer M from here to construct the parity check matrix
of the form:(

I I · · · I
I I((y−1)g2) · · · I((y−1)gs)

)
. (11)

Now, we shift first M columns cyclically to the left by
g1 = 0, and then shift next M columns cyclically to
the left by g2, etc., and finally shift final M columns
cyclically to the left by gs, and obtain the following:(

I(g1) I(g2) · · · I(gs)

I(yg1) I(yg2) · · · I(ygs)

)
.

This is the same as the one obtained by substituting
appropriate CPM of size M×M to the proposed exponent
matrix of the item 4) in the beginning. Therefore, using
the parity check matrix in (11), the proof works the same
as in the proof of Theorem 1. ■

Example 1: Use the Golomb ruler {0, 1, 4, 6} and select a
positive integer M = 13 satisfying M1, M2 and M3. Then
the following are some pairs of E and H from the above
discussion. Here, I(λ) is the M×M identity matrix circularly
left-shifted by λ.

1) Theorem 1 gives the following:

E =
(

0 0 0 0
0 1 4 6

)
, H =

(
I I I I
I I(1) I(4) I(6)

)
.

2) Corollary 1 with c = 2 in item 3) gives the following:

E =
(

2 2 2 2
0 1 4 6

)
, H =

(
I(2) I(2) I(2) I(2)

I I(1) I(4) I(6)

)
.

All the linear codes defined by the above 26 × 52 matrices
H are 5-seq (n = 52, k = 27, r = 3)-LRC with availability
t = 2 and the repair time at most 3.

In addition, we observe that these codes have rate 27/52,
which attains the rate bound (1).

We now discuss some simple sufficient conditions for the
three conditions M1, M2 and M3 for the positive integer M
with respect to a given Golomb ruler G.

The first condition M1 is that

gi ̸= gj (mod M) for all i ̸= j.

We simply take M to be bigger than the length of the
Golomb ruler, which is gs − g1, which is gs when g1 = 0.
This guarantees that this condition is satisfied with any G.
In the following, since we have assumed in the beginning
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TABLE I
5-SEQ LRCS FROM Theorem 1 USING SOME GOLOMB RULERS

that g1 = 0, we will assume the parameter M > gs unless
otherwise specified.

The second condition M2 is the following:

d + d′ ̸= 0 (mod M) for all d, d′ ∈ D

where we allow d = d′. Note that M2 is satisfied when M >
2gs, since d ≤ gs for d ∈ D. The value M = 2gs will not
satisfy M2, since gs+gs = 0 (mod M), where gs = gs−g1 ∈
D. Some values in the range gs < M < 2gs could satisfy the
condition also, and this must be checked individually.

The third condition M3 is that all the members in D and
M are collectively relatively prime. This condition will be
trivially satisfied for any M if all the members in D themselves
are already relatively prime. We simply point out here some
obvious sufficient conditions on D for any positive integer M
in M3:

1) D contains 1; or
2) D contains M − 1; or
3) D contains two integers that are relatively prime.

In the following, we discuss the importance of choosing the
smallest possible value of M > gs to achieve the best possible
(largest) code rate from Theorem 1.

Corollary 2: Let M < M ′ be two positive integers satis-
fying M1, M2 and M3 for a given Golomb ruler. The code
rate of the code from Theorem 1 using the value M becomes
larger than those using M ′.

Proof:

sM − (2M − 1)
sM

− sM ′ − (2M ′ − 1)
sM ′ =

M ′ −M

sMM ′ > 0.

By Corollary 2, we are interested in the smallest M that
satisfies M1, M2 and M3 for a given Golomb ruler. It is
interesting to see that some cases are rate-optimal and some
others are not. Table I shows the smallest possible M in
the range M > gs and the resulting code rate from the
construction of Theorem 1.

Remark 1: From Table I, it can be observed that the
decrease in the length gs of the Golomb ruler does not
necessarily decrease in the smallest M for the construction.
For example, for s = 8 in Table I, the Golomb ruler with
gs = 35 or 52 has the smallest M = 57, while those with
gs = 34 has the smallest M = 69 > 57 and results in a
non-rate-optimal LRC.

Remark 2: All of the non-rate-optimal codes in Table I
will satisfy some other optimality, called dimension-optimality.
We will discuss this in detail in Subsection III-C.

B. Condition on the Golomb Rulers for Rate-Optimality

We identify the necessary condition for the rate-optimal
examples shown in Table I. Recall that the rate bound (1)
can be written with r = s − 1 and u = 5 (so σ = 2) in our
construction as,

k

n
≤ r3

r3 + 2(r + r2) + 1
=

s3 − 3s2 + 3s− 1
s(s2 − s + 1)

.

On the other hand, the code rate of the 5-seq LRC from
Theorem 1 is given as

k

n
=

sM − (2M − 1)
sM

,

where the positive integer s comes from the number of marks
of the chosen Golomb ruler G and a positive integer M is
selected at random but it has to satisfy three conditions M1,
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M2 and M3 with G. If the code is rate-optimal, then

sM − 2M + 1
sM

=
s3 − 3s2 + 3s− 1

s(s2 − s + 1)
,

which implies that

M = s2 − s + 1. (12)

Conversely, if, for an s-mark Golomb ruler G, the value
M = s2 − s + 1 satisfies the three conditions M1, M2 and
M3 with G, then the resulting 5-seq LRC from Theorem 1
is rate-optimal. Furthermore, the rate-optimality implies that
the value M must be the smallest possible due to Corollary 2.
This can be summarized as:

Lemma 1: The 5-seq LRC from Theorem 1 will be
rate-optimal if and only if M = s2 − s + 1 is the (smallest
possible) positive integer satisfying M1, M2 and M3 with the
s-mark Golomb ruler G for the construction.

Remark 3: The rate of the code from Theorem 1 can be
stated as

k

n
=

sM − (2M − 1)
sM

>
s− 2

s
.

Now, we would like to characterize those s-mark Golomb
rulers G so that the value M = s2−s+1 satisfies M1, M2 and
M3 with respect to G. We will eventually prove that ONLY the
s-mark Golomb rulers from “some” (m, s)-modular Golomb
rulers satisfy this property.

In the meantime, we would like to note that, for an s-mark
Golomb ruler G, the value M = s2 − s + 1 may not always
satisfy the condition M2. An example is the 4-mark Golomb
ruler {0, 1, 4, 9} with D = {1, 3, 4, 5, 8, 9}. Here, s2−s+1 =
13 and 8 + 5 ≡ 0 (mod 13).

An (m, s)-modular Golomb ruler (MGR) is a set of s
residues, g1, g2, . . . , gs (mod m), such that all the differences
gi − gj (mod m) for i ̸= j are distinct and nonzero [1], [6],
[8], [9], [28], [33]. If we take an (m, s)-MGR G (mod m) as
a straight integer set in the range from 0 to m− 1, the result
becomes an s-mark Golomb ruler. We will use this method of
getting an s-mark Golomb ruler from an (m, s)-MGR in this
paper. We also assume 3 ≤ s < m for some non-triviality.

The following three types are well-known systematic con-
structions for (m, s)-MGRs [1], [28], [33]:

Known-fact 3: 1) (Singer [33]) For any prime power q,
there is a (q2 + q + 1, q + 1)-MGR.

2) (Bose [1]) For any prime power q, there is a (q2 − 1, q)-
MGR.

3) (Ruzsa [28]) For any prime q, there is a (q2 − q, q − 1)-
MGR.

Consider any (m, s)-MGR and its straight version of the
s-mark Golomb ruler G. We will claim that the value M = m
satisfies M1 and M2 with respect to G.

Consider an MGR {g1, g2, . . . , gs (mod m)} of distinct s
residues mod m and its straight version G = {g1, g2, . . . , gs}
where we assume that 0 ≤ gi < m for all i, and that g1 <
g2 < · · · < gs. Since an MGR contains distinct residues mod
m, we see that gi ̸= gj (mod m), which is M1 with M = m
for G. For M2 we recall the defining property of an MGR:
gi − gj (mod m) are all distinct residues for i ̸= j. Recall

the definition of D = {gj − gi|i < j} which contains all the
positive distances of the (straight) G. Since G is a Golomb
ruler, we know that D contains all distinct positive integers.
When we denote by Dm the set of residues d (mod m) for
each integer d ∈ D, then the defining property of an MGR
implies that −Dm∪Dm contains all distinct residues mod m,
where −Dm is the set of negative residues of the members
of Dm. Therefore, Dm and −Dm are disjoint. If d + d′ = 0
(mod m) for some d, d′ ∈ Dm, then d = −d′ (mod m) with
d ∈ Dm and −d′ ∈ −Dm, which is impossible, which implies
M2 with M = m. This can be summarized as

Lemma 2: We consider an s-mark Golomb ruler G from
an (m, s)-MGR by taking the marks as straight integers in the
range from 0 to m− 1. Then, the value M = m satisfies M1
and M2 with respect to G.

Now, if we take M = m from an (m, s)-MGR, then we
only have to check M3 with respect to its straight version G.
We are able to find a necessary and sufficient condition on
(m, s)-MGRs for the value M = m to satisfy M3. They are
the MGRs which come from the (m, s, 1)-cyclic difference
set [6], and mentioned as an item 1) of Known-fact 3.

The (m, s, 1)-cyclic difference set is the set of s residues
g1, g2, . . . , gs (mod m) such that the set of all the differences
gi − gj (mod m) is the set of all the non-zero residues mod
m [4]. It is also called a cyclic planar difference set [4].
It is well-known that the (m, s, 1)-cyclic difference set is
equivalent to an (m, s)-MGR [6]. One of the well-known
(m, s, 1)-cyclic difference set comes from Singer with param-
eters (q2+q+1, q+1, 1) when q is a power of a prime [4], [8],
[9], [33]. If we let q +1 = s, then q2 + q +1 = s2−s+1 and
the parameters become

(q2 + q + 1, q + 1, 1) = (s2 − s + 1, s, 1).

We are considering exactly those s-mark Golomb rulers from
(m, s)-MGRs that are equivalent to (m, s, 1)-cyclic difference
sets with m = s2 − s + 1.

Theorem 2: The resulting 5-seq LRC from Theorem 1 using
an s-mark Golomb ruler G and some positive integer M is
rate-optimal if and only if G (mod M) with M = s2−s+1 is
an (M, s, 1)-cyclic difference set.

Proof: We first note that M = s2 − s + 1 by Lemma 1.
We also note that G and M used in Theorem 1 must satisfy
M2. For the necessary condition, recall the notation that D =
{gj − gi|i < j} is the set of positive differences of marks of
G. Observe that M−1

2 = s(s−1)
2 = |D|.

Claim that

D ∪ (−D) ≡ {1, 2, . . . ,M − 1} (mod M).

If −d ∈ D (mod M), then d + (−d) = 0 (mod M)
which is impossible by M2. Therefore, D (mod M) and −D
(mod M) are disjoint subsets of the integers mod M , each
of size (M − 1)/2, and hence, their union becomes all the
non-zero residues mod M . This proves that G (mod M) is
an (M, s, 1)-cyclic difference set.

For sufficiency, we have already done for M to satisfy M1
and M2 in Lemma 2, since an (M, s, 1)-cyclic difference set
is an (M, s)-MGR and G is its straight integer version. Now,
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the fact that G (mod M) is an (M, s, 1)-cyclic difference set
implies that D contains 1 or M−1, and hence the value M also
satisfies M3. Now, it is known that if an (M, s)-MGR exists,
then M ≥ s2−s+1 [6]. Therefore, the value M = s2−s+1 is
the smallest possible value satisfying all three conditions M1,
M2 and M3, and hence, the 5-seq LRC from Theorem 1 with
this G and M becomes rate-optimal.

It turned out that the Golomb rulers in Table I for
rate-optimal codes are all derived from some (s2− s+1, s, 1)
cyclic difference sets, and the smallest value of M turns out to
be M = s2−s+1. These are the cases s = 4, 5, 6, 8, 9, 10 with
M = 13, 21, 31, 57, 73, 91, respectively.

The case s = 7 in Table I is particularly interesting. It is
known that a (43, 7, 1)-cyclic difference set does not exist
since s − 1 = 6 is not a prime power [16]. Therefore, one
cannot construct a 7-mark Golomb ruler from a (43, 7, 1)-
cyclic difference set. On the other hand, there are lots of
7-mark Golomb rulers in general, two of which are selected
in Table I, both of which give some non-optimal codes with
M = 49 > 43.

We now apply the s-mark Golomb rulers from the (m, s)-
MGRs in the items 2) and 3) of Known-fact 3. The value
M = m in both cases is known to satisfy M1 and M2 by
Lemma 2. We confirmed that it also satisfies M3.

Table II shows the application of s-mark Golomb rulers with
M = m from the items 2) and 3) of Known-fact 3 [1], [28].
When M is chosen as m = s2−1 or s2+s, the resulting code
rate cannot achieve the bound (1). This is actually the result we
expected, since s2+s > s2−1 > s2−s+1. However, if there
exists a smallest M that is smaller than s2−1 or s2 +s while
satisfying M2 and M3 for the corresponding Golomb rulers,
it would be possible to generate a code with a code rate closer
to the bound (1). For example, when s = 4 in Ruzsa’s type,
the m = 20 from the parameter (m, s). However, the smallest
M that satisfies M2 and M3 is 13 = 42− 4+1, which yields
a rate-optimal code. In this case, {0, 1, 3, 9} (mod M = 13)
indeed forms a (13, 4, 1)-cyclic difference set.

C. Condition for Dimension-Optimality

It is obvious that the rate-optimal LRC is dimension-
optimal. Therefore, an easy and obvious sufficient condition
for dimension-optimality is the same condition for the rate-
optimality. We note that some non-rate-optimal LRC can
be dimension-optimal. Therefore, it would be interesting to
find some general conditions for the code (whether it is
rate-optimal or not) from Theorem 1 to be dimension-optimal.
Recall that the dimension bound (2) can be written with
r = s− 1 and u = 5 (so σ = 2) in our construction as,

k ≤
⌊

nr3

r3 + 2r2 + 2r + 1

⌋
=
⌊

n(s− 1)3

s(s2 − s + 1)

⌋
.

On the other hand, the 5-seq LRC according to Theorem 1
has length n = sM and dimension k = sM − 2M + 1.
Therefore,

k = sM − 2M + 1

≤
⌊

sM(s− 1)3

s(s2 − s + 1)

⌋

= sM − 2M +
⌊

M

(s2 − s + 1)

⌋
,

where the equality holds if and only if

s2 − s + 1 ≤ M < 2(s2 − s + 1). (13)

Theorem 3: The resulting 5-seq LRC from Theorem 1 is
dimension-optimal if and only if the selected positive integer
M in the construction is in the range of (13).

We remark that the equality M = s2 − s + 1 in (13) is
the necessary condition for rate-optimality as discussed in
Lemma 1.

Recall that the each of the values M = m, m+1, . . . , 2(s2−
s + 1)− 1 where m is from (m, s)-MGR in the items 2) and
3) of Known-fact 3 satisfies M1, M2 and M3 with its straight
version s-mark Golomb ruler. For the value m = s2 − 1 or
m = s2 + s, the above values of M are all in the range (13),
the resulting codes from Ruzsa and Bose type (m, s)-MGRs
with any of the above M are all dimension-optimal. The cases
with M = m are shown in Table II.

Finally, we would like to argue that, according to Remark 2,
when the LRC is not rate-optimal but dimension-optimal,
it can also be called rate-optimal in general in the sense that
there does not exist an LRC of larger dimension and hence
there does not exist an LRC of larger rate for the given length.
In particular, using the (s2 − s + 1, s, 1)-cyclic difference set,
the resulting codes with any M in the range (13) except for
M = s2 − s + 1 are not rate-optimal but dimension-optimal
(Theorems 2 and 3). All these cases also can be said to be
rate-optimal in general in the same sense.

D. Some Variations for Availability 3

We now construct 5-seq LRCs with availability 3 by com-
bining several non-trivial variations of Theorem 1, ensuring
that 5 erased symbols can be recovered with at most 2 repair
time.

Theorem 4: Let {g1, g2, . . . , gs} with 0 = g1 < g2 < · · · <
gs be an s-mark Golomb ruler and D = {gj − gi|i < j}. Let
M > gs be a positive integer that satisfies M2. Consider a
positive integer 2 ≤ x < M that satisfies

gcd(x− 1, M) = gcd(x, M) = 1. (14)

Let E be the 3× s integer matrix of the form

E =

 0 0 · · · 0
0 g2 · · · gs

0 xg2 · · · xgs

 . (15)

Now, construct a binary 3M × sM matrix H by substituting
a circular permutation matrix (CPM) of size M × M into
the position (i, j) of E for all i, j, where i = 0, 1, 2 and
j = 0, 1, . . . , s− 1. Here, each CPM for the position (i, j) is
obtained by taking the circular left-shift of the columns of the
identity matrix by the integer e(i, j).

Then, H becomes a parity check matrix of a binary linear
(n, k) code with length n = sM and dimension k ≥ sM −
3M + 2. Furthermore, this binary linear (n, k) code becomes
a 5-seq LRC with availability 3, locality r = s − 1 and the
repair time at most 2.
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TABLE II
5-SEQ LRCS FROM Theorem 1 USING SOME GOLOMB RULERS GENERATED BY VARIOUS MODULAR GOLOMB RULERS

TABLE III
COMPARISON OF THE VARIOUS PARAMETERS OF THE 5-SEQ LRCS

Proof: The matrix H in the theorem becomes

H =

 H1

H2

H3

 =

 I(0) I(0) · · · I(0)

I(0) I(g2) · · · I(gs)

I(0) I(xg2) · · · I(xgs)

 (16)

which defines an LRC of length n = sM and locality r =
s− 1.

Now, we claim that rank(H) ≤ 3M − 2. For 1 ≤ i ≤ 3,
each row-block Hi contains exactly single 1 in each column.
Therefore, the sum of all the rows in each Hi results in the all-
one vector. From the proof of the dimension in Theorem 1, the
first row of H2 is the sum of all other rows in their row-block
plus the sum of all the rows of H1. So is the first row of
H3, similarly. Therefore, 3M − 2 rows from H except for,

for example, the first rows of H2 and H3, can span the whole
row space of H . Therefore, the rank(H) ≤ 3M − 2 and thus
k ≥ sM − (3M − 2).

Now, we will show the availability t = 3. We need to show
that any two rows in H satisfies condition (6). According to
Theorem 1, the submatrix composed of H1 and H2 satisfies
condition (6). By Corollary 1, the submatrix composed of
H2 and H3 satisfies condition (6). By Corollary 1, the subma-
trix composed of H1 and H3 satisfies condition (6). Therefore,
H in (16) satisfies the condition (6).

Now, the LRC by only the H1 and H2 is already a 5-seq
LRC, so is the code by H . That is, inclusion of H3 only adds
up some additional (disjoint) repair sets so that the repair time
is decreased to at most 2.

Corollary 3: Any non-zero constant can be used in the first
row of the exponent matrix (15) in Theorem 4.
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Remark 4: The rate of the code from Theorem 4 can be
stated as

k

n
≥ sM − 3M + 2

sM
=

s− 3
s

+
2

sM
>

s− 3
s

.

Remark 5: To achieve the rate upper bound in (1), Corol-
lary 3 of [2] implies that each column of H must have a weight
of 1 or 2, which implies that ANY sequential-recovery LRC
with availability 3 cannot achieve this bound. As a result, the
resulting LRC from Theorem 4 does not achieve the upper
bound in (1). Its dimension-optimality is not discussed only
because its dimension cannot be exactly determined.

IV. CONCLUDING REMARKS

We will review some previous constructions for 5-seq LRCs
and compare these with the proposed constructions in this
paper.

In 2016 [3], u-seq LRCs for u = 4, 5, 6, 7 with r = 2 have
been constructed in a graphical form (First row of Table III).
The first construction is restricted to the cases r = 2 and 8|k
and the rate 8/21. The second construction designs u-seq LRC
for r ≥ 3 when there exist two or more r×r orthogonal Latin
squares. Here, the length and the dimension are determined by
the value r. Both constructions result in u-seq LRCs without
any availability.

In 2020 [2], Some parity-check matrices are constructed
using the tree-like graphs with girth ≥ u+1, which are, in fact,
u-seq LRCs (Second row of Table III). For u = 5, to achieve
the rate bound (1), the code length must be a multiple of
r2 + r + 1, and the parameter a0 in the table must be a
multiple of r + 1. These constructions also result in u-seq
LRCs without any availability. The rate-optimal 5-seq LRCs
proposed in this paper (when a0 = r+1) have the same length
n as the proposed rate-optimal code (when M = s2−s+1 and
s = r + 1) from Theorems 1 and 2.

In 2020 [42], the concept of joint sequential-parallel recov-
ery LRCs is first introduced (Third row of Table III). The first
construction produces 5-seq LRCs with availability 2 using a
Latin rectangle derived from a (v,≥ r+1, 1) symmetric block
design. Here, the authors left the determination of the exact
dimension for future work and mentioned, based on experi-
mental results, that if (r2 + r + 1, r + 1, 1) symmetric block
designs exist, it would be possible to generate rate-optimal
codes with some shorter block lengths. The second construc-
tion produces 5-seq LRCs with availability 3 using a Latin
square not containing a 2×2 sublatin square. Here, the length
is determined from r as n = (r + 1)2.

Besides the comments in the last column of Table III, some
other properties of the proposed constructions (Fourth row of
Table III) can be summarized as follows:

1) The proposed construction achieves a higher code rate
(almost s−2

s ) than those from [3]. It will be higher if a
smaller M can chosen.

2) It produces the code with availability 2 or 3 in a simpler
manner than those from [2].

3) It has much more flexible choice for the length since there
are a lot of choices for the value M than those from [42].

4) We provide necessary and sufficient conditions for the
proposed code to be rate-optimal and/or dimension-
optimal by calculating the exact value of the dimension
of the code.

5) The proposed construction uses any s-mark Golomb ruler,
which is not necessarily an optimal one (shortest Golomb
ruler). There are a lot of s-mark Golomb rulers for a given
integer s ≥ 3, and the length gs does not matter expect
for the conditions for M .
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