compared to the equiprobable one, the channel capacity limit is
10.2 dB, and we achieve Py(e)= 10" within 1.2 dB of this limit.
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Fig. 3 Performance comparison of two schemes of non-equiprobable and
equiprobable signalling at rate 2 bits/dim using pragmatic binary turbo
coded modulation with 18 iterations

Block length N=32768 bit channel capacity limit 5.74 dB

Conclusions: We have presented a new scheme for improving the
performance of pragmatic binary turbo coded modulation by using
non-equiprobable signalling. We have described a non-equiprobable
signalling technique that makes it possible to approach the maximum
capacity gain of a finite constellation AWGN channel. Our non-
uniform signalling scheme is very easy to implement and adds
negligible load on the turbo decoder. We have shown for an example
of 6 bits/QAM symbol, a gain 0f 0.93 dB out of the available shaping
gain of 1.07 dB, and transmission within 1.2 dB of the Shannon limit.
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Product distance profile of product distance
codes for STTC with delay diversity

S.-E. Park, M.-H. Shin, H.-Y. Song and DX. Kim

Space-time trellis codes (STTC) using product distance codes with
delay diversity structure are studied and the optimal condition of
product distance codes is proposed. The upper bound of the optimal
product distance of codes on 8-PSK modulation is derived. The
performance of the STTC using various product distance codes
found through a systematic code search is compared with that of
delay diversity.

ELECTRONICS LETTERS 4th July 2002 Vol. 38

Introduction: We consider the delay diversity scheme as proposed by’
Wittneben [1] which can also be thought of as the combination of a
repetition code with a delay element. Tarokh’s space-time trellis codes
(STTC:s) contains this delay diversity structure [2].

Fig. 1 shows a labelling of the QPSK constellation and trellis
description of STTC with two transmit antennas, using the block
code {00, 11, 23, 32}. Delay diversity is also an STTC using the
repetition code {00, 11, 22, 33}. Each branch has the label 5,55, which
indicates that symbol s, is transmitted over the first antenna and that
symbol s, is transmitted over the second antenna. Both of these codes
have the largest minimum product distance over the QPSK alphabet, but
their performances are not at all the same [simulation demonstrates this]
as shown in Fig. 2 which is the main topic of this Letter.

00 01 02 03

10 11 12 13

30 31 32 33

20 21 22 23 £

Fig. 1 STTC with {00, 11, 23, 32}, QPSK, Tx=2

We note that the number of codeword pairs with each product
distances are different between these codes, and we define N,;, as
the number of codeword pairs with the minimum product distance. The
former has N,,;,, =4 and the latter N,,;, =2.

Optimal and super-optimal product distance codes: Consider a block
code C given by

C={ec;, ¢ ...,¢y) 1)

C consists of M codewords and each codeword has length N. The ith
codeword is ¢;=c}c? - - - ¢, where ¢"€{0, 1,2,..., M— 1}, m=1,
2,..., N. With M-ary modulation constellation, we define the product
distance Dy, ) between pairs of distinct codewords (c;, ¢;) as follows

[3]:
N
Dieep = TTIAE) =S @

where f(c]") denotes the modulation constellation point corresponding
to the symbol element ¢;" and has complex value. We assume that the
modulation mapping function f'is a bijection (1 — 1 mapping) from {0,
1,2,..., M—1} onto the set of constellation points S. In the case of
QPSK modulation, ¢ and f(c]") belong to {0, 1, 2, 3} and {/@™/4*
k=0, 1, 2, 3}, respectively. In the case of 8-PSK, ¢/" and f{c}") belong
to {0, 1, 2,..., 7} and /®¥/®* k=0, 1,2, ..., 7}, respectively.

We only consider two-dimensional signal space in this Letter. Then
an optimal product distance code is defined as a block code where
minimum of the product distance between pairs of distinct codeworks is
maximum among all such block codes. Formally, we use the product
distances between pairs of distinct codewords of C, and use the notation
given by

N
— mi — mi _ 2
Dml’n - I};I}ID((‘IJJ) - Ejn m];II |f(cfn) f(cjm)l (3)

and we denote D,,;, of an optimal product distance code by D,,,,,. Using
this optimal product distance code with delay elements we can construct
a space-time transmit system.

To further classify the optimal product distance codes of given
parameters, we define N,,;, as the number of distinct codeword pairs
(ci, ) with Dy, )= Dinin. From the relation between the free distance
and the number of paths achieving free distance in convolutional codes,
we can suppose that the space-time trellis code using the optimal
product distance code performs better as N, is minimised. This
prompts a definition of a super-optimal product distance codes as the
optimal code with minimum N,,,;,.

It is proved that the set {c7, c3, ..., cjs} should be a permutation of
{0,1,2,...,M—1} foreach n=1, 2,..., N if and only if D,,, is
maximised [4]. We can assume that C has an all-zero codeword without
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loss of generality to reduce the searching complexity. So we let ¢, =
cic? - &Y be the all-zero codeword.

Upper bound of optimal product distance on 8-PSK: Li et al. [4]
found the value of D,,, on QPSK modulation as follows:

D, = 2V “
where N is the number of transmit antennas. Using a similar argument,
we can derive the upper bound of D,,, on 8-PSK modulation as

Dy 529 )
As the number of transmit antennas increases, the complexity of
searching for the exact value of D,,, also increases. Thus, the derived

upper bound will help estimate D,, when the number of transmit
antennas is large.

Table 1: Product distance profiles (QPSK)

Tx Product distance profile Multiplicity | Total
Ny | Ng | Nig | N3z | Noa | Nizs | Nass | Nsiz | Nioza
,L2l4lo 4 p
410 2 2
of6fofo
3 212210 24 6
4 0 0 2 4
oj4l2]01]o0 9%
4 2 0 4 0 0 48 &
2 2 0 2 0 64
4loflo] o2 8
0|2 4 0 0 0 480
0 4 0 2 0 0 320
5 20| 2 2 0 0 320 6
2 2 0 0 2 0 160
4 0 0 0 0 2 16
Product distance profile and super-optimality: Letiy, iy, ..., i, be all

possible product distance of the pairs of all possible codes such that
i) <iy< ... <i; when the parameters, e.g. the type of modulation and
the number of transmit antennas are given. k is a finite number
depending on above two parameters. In general, we use the notation
N; as the number of codeword pairs where product distance of the pair
is i. We define the list (N;, N;,, ..., N, ) as the product distance profile
of the code. Given a code C, let N,/ be the first nonzero number of the
product distance profile i.e. all the N;, N, ..., N; 1 are zero and
N, #0. Then D,,;, =i; and the optimal product distance code has the
largest i; among all codes of given parameters. The super-optimal
code is the optimal product distance code whose N; is minimum
among all the optimal ones. ’

Table 1 provides the product distance profiles of all possible block
codes using QPSK constellation shown in Fig. 1 in which the number
of transmit antennas ranges from 2 to 5.

Simulation results: Performance evaluation in terms of frame error
rate (FER) is conducted using computer simulation. Quasi-static flat
fading and perfect channel estimation are assumed. Maximum like-
lihood decoding with unquantised soft decision employing a space-
time Viterbi decoder is applied. A frame consists of 130 successive
symbols as IS-54 standard. We present simulation results of space-
time trellis codes found through systematic search with various
parameters compared with delay diversity as baseline performance.
Fig. 2 shows that, in case of QPSK modulation with two transmit
antennas, both delay diversity and STTC with an optimal product
distance code have the same D,,;,, =4 but different N,,,;,, which are 4
and 2, respectively. The latter code outperforms by about 0.7 dB over
the former at 10~ FER when using 4 receive antennas. In the 8-PSK
modulation format as shown in Fig. 3 with 3 transmit antennas, STTC
with an optimal product distance code outperforms by about 4 dB
over delay diversity.

100+

107"

o

W10 [ delay (1R
4= Pdlty(1R%)
—— delay (2Rx)
10784 | Pdtopt(ZRx)
—— delay (4Rx)

- Pty (4R)

T T T T T T T T T

] 2 4 6 8 10 12 14 16 18 20
SNR per receive antenna, dB

Fig. 2 Performance simulation

QPSK, Tx=2, 4 State, 2 bit/s/Hz

— deiay (1RX)
e Pt N, (1R
e PN, (18X)
— delay (2Ax)

et AL, (2FX
------- PALN, ;o (ZR%)
—— dotay {4Hx)

e AL, (AHX
w-aee PO, (4R%)

SNR per receive antenna, dB

Fig. 3 Performance simulation
8-PSK, Tx =3, 64 State, 3 bit/s/Hz

Conclusion: We have investigated a design of STTC applicable to
various number of transmit antennas for both 4-PSK and §8-PSK. We
considered existing optimal product distance codes in terms of the
minimum product distance and derived the upper bound of optimal
product distance of codes on 8-PSK modulation. We suggested the
product distance profile and defined a super-optimal product distance
code in order to classify further the optimal ones. Monte-Carlo
simulations have been conducted for performance analysis. Simula-
tion results show that higher coding gain over delay diversity is
attainable as modulation constellation expands.
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