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Hall's sextic residue sequence of peripés defined as

s {1, ifte CouUCiUCs
L=

. . . . 0, otherwise
On the Linear Complexity of Hall’s Sextic Residue

Sequences wheret =0, 1, ..., p—1,andy is (and, always can be) selected such

. that3 € C, [8].
Jeong-Heon Kim and Hong-Yeop Saridember, IEEE

II. LINEAR COMPLEXITY OF HALL'S SEXTIC RESIDUE SEQUENCES

Abstract—in this correspondence, the characteristic polynomial If a binary sequencés; } of periodp has linear complexity., then
and hence the linear complexity of Hall's sextic residue sequences are thare exist constants, = 1. ci., cs c e, =1 € GF(2)
determined. such that PO T CL=1 O ’

Index Terms—Characteristic polynomial, Hall's sextic residue sequen-

ces, linear complexity. .
plextty §i = Cr—18i—1 + cr—28i—2 4+ +++ + coSi—1., forall L <i < p.

I. INTRODUCTION The polynomiale(z) = 2% + ¢z 12771 + -+ 4 ¢ is called the

.characteristic polynomial of the sequence.

| :eggdiﬁ t:)a;ltzrrllctzerglflirrl]azaieqse“ﬁ::ti(‘gvr"tsh :)ruitllLTj?rL a:torzzr(;iate'?:lt is known that the reciprocal characteristic polynomaigl:) of the
play p y app : g sp PeSequences: } is given by [10]

trum communications, due to their apparent randomness propesr?y
and ease of generation [12]. They are equivalent to cyclic Hadamard

* _ L L—1 -
difference sets [1], [6], and eveknownexample of such sequences ¢(z) =cor” + e’ o Fepa+l
has period that is either i) a prime congruent3tmod 4, or ii) a = (2" — 1)/ ged(2” — 1, S(x))
product of twin primes, or iiip" — 1 for some integer [4], [7], [13],

[1]. where
For cryptographic applications, e.g., stream ciphers, one prefers such
sequences with larger linear complexity. The linear complekitf a S(w) =s0+s1w 4+ sp1a” .

periodic binary sequence is the number of stages of the shortest ””fﬁr i lexi Vi b

feedback shift register (LFSR) that will produce it with appropriat € linear complexity of s } is given by

connection and initial condition [6]. The basic idea is that the sequence R

can completely be identified by some unwanted (or hostile) us@is if L =p—deglged(a” — 1, 5(x))].

terms are observed.

So far, the linear complexity of known examples of balanced binary For Hall's sextic residue sequence of perjadthe corresponding

sequences with optimal autocorrelation has been determined excepéfor) is given by

one case. Those with periods of type iii) above are the easiest examples

because they are either-sequences or sums of a few decimatede- S(x) = Co(x) 4+ Ci(x) + Cs(x)

quences. For those of type i), the result is further generalized so that the

linear complexity of larger classes of sequences including twin-primghere, since® € C;

sequences have been determined [2]. For type i), there are Legendre

sequences with period of every such prime and Hall’s sextic residue se- Pt

quences with period of such primpehat can also be written ds. +27 Ciz)= Y o' => 2" (2)
e, i=0

. . ) i ) Tkhen the linear complexity of Hall's sextic residue sequence of period
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To determine the linear complexity of Hall's sextic residue se- Theorem 1:Letp = 6f 4+ 1 = Tmod 8. Then there exists a prim-

guences, we need the following lemma.

Lemma 1: Letp = 4u® + 27 = 6f + 1 be a prime and? be a

primitive pth root of unity.

P1. |Ci| = (p—1)/6, aC; = C; for anya € Cy andCi(3) =
Co(8*).
C1(B*) = Ci(B) for anya € Cy.
Ci(8") = C(#7) if i andj are in the same residue class.
If2 € Cy, thenCy(3) = 0orl.

5

IZ Ci(B) = 1.
[=0

-1 € Cs.

Ifp = Tmod 8 thenS(3)S(3~ 1) = 0. If p = 3mod 8 then
S(3)S(B~") = 1.

Ifp = Tmod 8 then2 € Cy. If p = 3mod 8 then2 € Cj.

P2.
P3.
P4,

P5.

P6.
P7.

P8.

Proof: P1 follows from definitions (1) and (2). H € Cy, then

a = ¢* for some integef. Then

f=1 . A "
Cl(ﬁa) _ Z(ﬁgﬁz)sl‘qﬁj _ Zﬁyye(zﬂ) _ Ct(ﬁ)

j=0 =0
whichis P2. P3 is obtained by P22ifc Cy, thenC;(3)* = Ci(3%) =
C(8) by P2. Thus, i2 € Cy, Ci(3) = 0 or1. P5is proven by

5 5 f—1 ) p—1
dam =Y Z 53" = %Z/i’"' =1
=0 =0 =0 j=1

Since3f = (p — 1)/2 = 2u® + 13, f must be odd. Then P6 follows

from the fact that

IRV

g JON/2 . f6U=1)/243

For P7, we note that Hall's sextic residue sequence of periloduces a

cyclic Hadamard difference set with parametets p, £ = (p—1)/2,
and) = (p — 3)/4 [1]. Therefore, we have

p—1

S@)S(x ) =u + T+ (W +6)> 2" (moda” —1).
=0

P7 is obtained by substitutinginto . P8 can be proved by observing

that2 is a cubic residuenod p for any rational prime [9]. O

Lemma 2: Letp = 4u® 4+ 27 = Tmod8 andj be a primitive
pth root of unity. Then one of's(3) + Cs(3), C1(5) + C4(3), and

itive pth root 3 of unity such thatS(3) = 1, and for such3, we have
S(BJ) = ( for a”j ceCiUCUC3UC,UCCs.
Proof: Let~ be a primitivepth root of unity. Then

p—1 p—1 p—1

> S = %CO(W'i) +Y () + > Caly)

=1 =1 =1 =1

= iCO (W"Rj) + i01 (’}”Sj) + icz ('}”Sj)
3=0 j=0 =0

5 _ —2
=3"G (vaj) = vagk =1.
=0 k=0

Thus, there exists at least oheuch thatS(~') = 1. Theng = ~' is
what we want. _

Now we will showthat5(47) = O forall j € C1UCUC3UCLUCs.
From P3 in Lemma 1, it suffices to show thsit3*> ) = 0 fori =
1,...,5.Since
we have

S(5™") = S(8*°) = C(8) + Cu(B) + Co(B) = 0

from P7 in Lemma 1. Then we ha¥é (3) + C4(3) = 1 and hence,
from Lemma 2

Oo(ﬁ) + 03(/3) = Cz(@) =+ C5(@) = 0.
Thus, we have’; (3) = 1 andC4(3) = 0. Furthermore,

S(8%) =Ci(B) + Co(B) + Ca(B) = C2(B) + 1

S =5 (,3““‘) =C4(B) + C5(8) + C1(B) = C5 () + 1.

Thus, S(5*) :_5(334) = 0 sinceS(5*)S(57*) = 0. Similarly,

S(8%°) = 5(8%°) = 0. O

Theorem 2: Hall’s sextic residue sequence of peripe= 4u? + 27
has the following reciprocal characteristic polynomi&lz):
(:c—l)H(:c—IGi), if p="T7mod38
c(x) = i€Cq

2P —1, if p=3mod8

C2(8) + C5(3) is 1 and the others must lie whereg is a primitivepth root of unity such thaf(3) = 1. The linear
Proof: If p = 7mod8 then2 € Cy. Then from P4 and P5 in complexity L is given by
Lemma 1, either one & (3)+C5(3), C1(5)+C4(8),andC:(5)+

Cs(3) is 1 or all three of them aré. From P1 in Lemma 1, we have { 142~ 1, if p = Tmod 8
L= 6
C1(B) + Ca(B) = Co(B%) + Cs(5°) 4) Ps if p = 3mod8.
C2(8)+ Cs(B) =Co (,332) + Cj (332) . (5) Proof: If p = 7Tmod8, by Theorem 15(3*) = 1 fora € Cy

andS(8°) = 0forb € C, UC, U C3 U Cy U Cs. Also S(1) =
Suppose that all of them ard. Then from (4) and (5), [(P —1)/2mod2] =1.Thus,c"(z) s given by
Co(B')+ C3(8") = Lforalli = 1,...,p— 1. It also means ,
thatC1(8")+Cs(3*)=1foralli=1, ..., p—1, which is impossible (z) = (« —1) =(z—1) H (z = 3
since the degree df; (x)+Cy(x)+1is less thap—1. O ged(ar — 1, S(x)) ieCh
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which is over GH2) since2Cy = Cjy. The linear complexityL is  On the Achievability of the Cramér—Rao Bound for Poisson

14+ (p - 1)/6. _ v Distribution
If p = 3mod 8, by P7 in Lemma 1 we havg(5/)S((3/)™') = 1
forj =1,...,p— 1. Thatis,S(37) # 0forj = 1,...,p — 1. Ron Aharoni and Delman Le#lember, IEEE

Also S(1) = [(p — 1)/2mod 2] = 1 because@ = 3mod 8. Thus,
ged(a? — 1, S(z)) =1land hence*(z) =2 —landL =p. O

(1]
[2

(3]

[4]

(5]
(6]

(71

(8]
9]
(20]

(11]

(12]

(23]

(14]

Abstract—This correspondence examines the Cramér—Rao (CR) bound
for data obtained in emission tomography. The likelihood function involved
REFERENCES is the combined probability of independent Poisson random variables, the
. . ! g expectation of each being a linear functiore] X of the parameter vector .
L. D. Baumert, Cyclic Difference Sets New York: Springer-Verlag, We investigated the achievability of the CR bound in the interior and on
1971. the boundary of the domain of the problem. For the former, we found that
C. Ding, "Linear complexity of generalized cyclotomic binary S€the CR bour?éiis achievable if and opnl ifthé vectorge;'s are’obtained from
guences of order 2Finite Fields Their Applic.vol. 3, pp. 159-174, . ~N . y o<
1997. a b_as[s forR™, by repeating some vectors, multiplied by constant fgctors.
C. Ding, T. Helleseth, and W. Shan, “On the linear complexity of LeA similar result holds for the boundary case. The practical implication of

endre sequencesEEE Trans. Inform. Theoryol. 44 1276-1278 the achievability condition is that the CR bound is not attainable for typical
E/Iay 1998q ' ' Yol 4%, pp. ' emission tomographic systems.

J.-H. Kim and H.-Y. Song, “Existence of cyclic Hadamard difference |ndex Terms—Achievability, constrained Cramér—Rao (CR) bound,
sets and its relation to binary sequences with ideal autocorrelatlon,”emjssion tomography.

Commun. and Networksol. 1, no. 1, pp. 14-18, Mar. 1999.

J.-H. Kim, M. Shin, and H.-Y. Song, “Trace representation of Legendre
sequences,Des., Codes Cryptogto be published.

S. W. Golomb, Shift Register SequencesSan Francisco, CA:

Holden-Day, 1967. Revised edition: Laguna Hills, CA: Aegean Park, We wish to study the behavior of the Cramér—Rao (CR) bound

1982. : feci feai
S. W. Golomb and H.-Y. Song, “A conjecture on the existence of cycli!:n emission tomography. The case of ransmission tomography was

Hadamard difference sets]! Statist. Planning and Infervol. 62, pp. studied by [1], [2]. In emission tomography, one injects into the

|. INTRODUCTION

39-41, 1997. subject some photon-emitting substance and obtains a vector of
M. Hall, Jr., “A survey of difference setsProc. Amer. Math. Socvol.  measurementg,= (y1, ..., yr)t € NP, of the photon emissions in
7, pp. 975-986, 1956. P directions (callegrojection lineg. N is the set of natural numbers

K. Ireland and M. RosenA Classical Introduction to Modern Number . . . . . .
Theory 2nd ed. New York: Springer-Verlag, 1990. including zero. The problem is to obtain a spatial map of the density

R. Lidi and H. Neiderreiter, “Finite fields,” ifEncyclop. Math. Its Ap- Of the injected material from the projection line measurements. The

plic.. Reading, MA: Addison-Wesley, 1983, vol. 20. probability distribution which emerges is (see, e.qg., [3]-[5])
J.-S. No, H.-K. Lee, H. Chung, H.-Y. Song, and K. Yang, “Trace rep-
resentation of Legendre sequences of Mersenne prime petl®EE

Trans. Inform. Theoryol. 42, pp. 2254-2255, Nov. 1996. P —(eiA) (p \VYi

e (ei, \)
M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Leviipread Spec- p(ylA) = H — @
trum Communications Rockville: Comput. Sci., 1985. Revised edi- i=1 Yi:
tion: New York: McGraw-Hill, 1994.
H.-Y. Song and S. W. Golomb, “On the existence of cyclic Hadamard
diflference sets,IEEE Trans. Inform. Theorwol. 40, pp. 1266-1268, where\ = (M, oen, )\N)'Ty and); is the average number of photon
July 1994. emissions in théth pixel detected by the system. Tex N matrix
R. Turyn, “The linear generation of the Legendre sequencksSoc. C = (e . )Tp is called th rg'ectiOnymatrix A e|;menk~- !
Ind. Appl. Math, vol. 12, no. 1, pp. 115-117, 1964. = (e, ..., ¢ep €pro) ‘i

of the projection matrix is the ratio of the mean number of emissions
detected at thé&th projection line from thgth pixel to the total number
of emissions detected at thith projection line.

For the distribution in (1) to make mathematical sense, we only re-
quire{e;, A) > 0 for all i, wheree;, A € RY. (Note that the limit of
(e;, A)Yi as{e;, A) — 0is well defined. That is{¢;, A)¥* — 1 for
yi = 0, and{c;, A)¥* — 0 fory, > 0. Thus, the product term in (1)
can be regarded as the Kronecker delta function wleenA) = 0.)
For the distribution in (1) to reflect the physical situation in emission
tomography, we have the following physical constraints> 0 and
¢i; = 0forall 7, j. We shall investigate the CR bound without the
physical constraints for most part of the correspondence, and return to
the implication of the physical constraints in Section IlI-C.
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