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On the Linear Complexity of Hall’s Sextic Residue
Sequences

Jeong-Heon Kim and Hong-Yeop Song, Member, IEEE

Abstract—In this correspondence, the characteristic polynomial
and hence the linear complexity of Hall’s sextic residue sequences are
determined.

Index Terms—Characteristic polynomial, Hall’s sextic residue sequen-
ces, linear complexity.

I. INTRODUCTION

Periodic balanced binary sequences with optimal autocorrelation
play an important role in many applications, including spread-spec-
trum communications, due to their apparent randomness property
and ease of generation [12]. They are equivalent to cyclic Hadamard
difference sets [1], [6], and everyknownexample of such sequences
has period that is either i) a prime congruent to3mod 4, or ii) a
product of twin primes, or iii)2n � 1 for some integern [4], [7], [13],
[1].

For cryptographic applications, e.g., stream ciphers, one prefers such
sequences with larger linear complexity. The linear complexityL of a
periodic binary sequence is the number of stages of the shortest linear
feedback shift register (LFSR) that will produce it with appropriate
connection and initial condition [6]. The basic idea is that the sequence
can completely be identified by some unwanted (or hostile) users if2L
terms are observed.

So far, the linear complexity of known examples of balanced binary
sequences with optimal autocorrelation has been determined except for
one case. Those with periods of type iii) above are the easiest examples
because they are eitherm-sequences or sums of a few decimatedm-se-
quences. For those of type ii), the result is further generalized so that the
linear complexity of larger classes of sequences including twin-prime
sequences have been determined [2]. For type i), there are Legendre
sequences with period of every such prime and Hall’s sextic residue se-
quences with period of such primep that can also be written as4u2+27
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for someu. The linear complexity of Legendre sequences has been de-
termined earlier by Turyn [14] and recently rediscovered by Dinget al.
[3], and further, their explicit trace representation was determined [5],
[11]. This correspondence determines the linear complexity and char-
acteristic polynomial of Hall’s sextic residue sequences.

Let p = 4u2 + 27 = 6f + 1 be a prime andg be a primitive
root modulop. All the nonzero elements of the integersmod p can be
partitioned into six residue classesCl, l = 0; 1; 2; . . . ; 5, as

Cl = fg6i+lji = 0; 1; . . . ; f � 1g: (1)

Hall’s sextic residue sequence of periodp is defined as

st =
1; if t 2 C0 [ C1 [C3

0; otherwise

wheret = 0; 1; . . . ; p�1, andg is (and, always can be) selected such
that3 2 C1 [8].

II. L INEAR COMPLEXITY OF HALL’S SEXTIC RESIDUESEQUENCES

If a binary sequencefstg of periodp has linear complexityL, then
there exist constantsc0 = 1; c1; c2; . . . ; cL�1; cL = 1 2 GF(2)
such that

si = cL�1si�1 + cL�2si�2 + � � �+ c0si�L; for all L � i < p:

The polynomialc(x) = xL + cL�1x
L�1 + � � � + c0 is called the

characteristic polynomial of the sequence.
It is known that the reciprocal characteristic polynomialc�(x) of the

sequencefstg is given by [10]

c�(x) = c0x
L + c1x

L�1 + � � �+ cL�1x+ 1

= (xp � 1)= gcd(xp � 1; S(x))

where

S(x) = s0 + s1x+ � � �+ sp�1x
p�1:

The linear complexity offstg is given by

L = p� deg [gcd(xp � 1; S(x))]:

For Hall’s sextic residue sequence of periodp, the corresponding
S(x) is given by

S(x) = C0(x) + C1(x) + C3(x)

where, since3 2 C1

Cl(x) =
i2C

xi =

f�1

i=0

x3 g : (2)

Then the linear complexity of Hall’s sextic residue sequence of period
p is given by

L = p� jfj: S(�j) = 0; 0 � j � p� 1gj (3)

where� is a primitivepth root of unity over GF(2n) that is the splitting
field of xp � 1.
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To determine the linear complexity of Hall’s sextic residue se-
quences, we need the following lemma.

Lemma 1: Let p = 4u2 + 27 = 6f + 1 be a prime and� be a
primitive pth root of unity.

P1. jClj = (p�1)=6, aCl = Cl for any a 2 C0 andCl(�) =

C0(�
3 ).

P2. Cl(�
a) = Cl(�) for anya 2 C0.

P3. Cl(�
i) = Cl(�

j) if i andj are in the same residue class.

P4. If 2 2 C0, thenCl(�) = 0 or 1.

P5.
5

l=0

Cl(�) = 1.

P6. �1 2 C3.

P7. If p = 7mod8 thenS(�)S(��1) = 0. If p = 3mod8 then
S(�)S(��1) = 1.

P8. If p = 7mod8 then2 2 C0. If p = 3mod8 then2 2 C3.

Proof: P1 follows from definitions (1) and (2). Ifa 2 C0, then
a = g6i for some integeri. Then

Cl(�
a) =

f�1

j=0

(�g )3 g =

f�1

j=0

�3 g = Cl(�)

which is P2. P3 is obtained by P2. If2 2 C0, thenCl(�)
2 = Cl(�

2) =
Cl(�) by P2. Thus, if2 2 C0, Cl(�) = 0 or 1. P5 is proven by

5

l=0

Cl(�) =

5

l=0

f�1

i=0

�3 g =

p�1

j=1

�j = 1:

Since3f = (p� 1)=2 = 2u2 + 13, f must be odd. Then P6 follows
from the fact that

�1 = g(p�1)=2 = g(6f)=2 = g6(f�1)=2+3:

For P7, we note that Hall’s sextic residue sequence of periodp induces a
cyclic Hadamard difference set with parametersv = p; k = (p�1)=2;
and� = (p� 3)=4 [1]. Therefore, we have

S(x)S(x�1) = u2 + 7 + (u2 + 6)

p�1

i=0

xi (mod xp � 1):

P7 is obtained by substituting� into x. P8 can be proved by observing
that2 is a cubic residuemod p for any rational primep [9].

Lemma 2: Let p = 4u2 + 27 = 7mod8 and� be a primitive
pth root of unity. Then one ofC0(�) + C3(�); C1(�) + C4(�); and
C2(�) + C5(�) is 1 and the others must be0.

Proof: If p = 7mod8 then2 2 C0. Then from P4 and P5 in
Lemma 1, either one ofC0(�)+C3(�); C1(�)+C4(�); andC2(�)+
C5(�) is 1 or all three of them are1. From P1 in Lemma 1, we have

C1(�) + C4(�) =C0(�
3) + C3(�

3) (4)

C2(�) + C5(�) =C0 �3 + C3 �3 : (5)

Suppose that all of them are1. Then from (4) and (5),
C0(�

i) + C3(�
i) = 1 for all i = 1; . . . ; p � 1. It also means

thatC1(�
i)+C4(�

i)=1 for all i=1; . . . ; p�1, which is impossible
since the degree ofC1(x)+C4(x)+1 is less thanp�1.

Theorem 1: Let p = 6f + 1 = 7mod8. Then there exists a prim-
itive pth root� of unity such thatS(�) = 1, and for such�, we have
S(�j) = 0 for all j 2 C1 [ C2 [ C3 [ C4 [ C5.

Proof: Let 
 be a primitivepth root of unity. Then

p�1

i=1

S(
i) =

p�1

i=1

C0(

i) +

p�1

i=1

C1(

i) +

p�1

i=1

C3(

i)

=

5

j=0

C0 
3 +

5

j=0

C1 
3 +

5

j=0

C3 
3

=

5

j=0

C0 
3 =

p�2

k=0


g = 1:

Thus, there exists at least onei such thatS(
i) = 1. Then� = 
i is
what we want.

Now we will show thatS(�j) = 0 for all j 2 C1[C2[C3[C4[C5.
From P3 in Lemma 1, it suffices to show thatS(�3 ) = 0 for i =
1; . . . ; 5. Since

S(�) = C0(�) + C1(�) + C3(�) = 1

we have

S(��1) = S(�3 ) = C3(�) + C4(�) + C0(�) = 0

from P7 in Lemma 1. Then we haveC1(�) + C4(�) = 1 and hence,
from Lemma 2

C0(�) + C3(�) = C2(�) + C5(�) = 0:

Thus, we haveC1(�) = 1 andC4(�) = 0. Furthermore,

S(�3) =C1(�) + C2(�) + C4(�) = C2(�) + 1

S(��3) = S �3 =C4(�) + C5(�) + C1(�) = C5(�) + 1:

Thus,S(�3) = S(�3 ) = 0 sinceS(�3)S(��3) = 0. Similarly,
S(�3 ) = S(�3 ) = 0.

Theorem 2: Hall’s sextic residue sequence of periodp = 4u2+27
has the following reciprocal characteristic polynomialc�(x):

c�(x) =
(x� 1)

i2C

(x� �i); if p � 7mod8

xp � 1; if p � 3mod8

where� is a primitivepth root of unity such thatS(�) = 1. The linear
complexityL is given by

L =
1+

p� 1

6
; if p � 7mod8

p; if p � 3mod8.

Proof: If p � 7mod8, by Theorem 1S(�a) = 1 for a 2 C0

andS(�b) = 0 for b 2 C1 [ C2 [ C3 [ C4 [ C5. Also S(1) =
[(p� 1)=2mod2] = 1. Thus,c�(x) is given by

c�(x) =
(xp � 1)

gcd(xp � 1; S(x))
= (x� 1)

i2C

(x� �i)
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which is over GF(2) since2C0 = C0. The linear complexityL is
1 + (p � 1)=6.

If p � 3mod 8, by P7 in Lemma 1 we haveS(�j)S((�j)�1) = 1
for j = 1; . . . ; p � 1. That is,S(�j) 6= 0 for j = 1; . . . ; p � 1.
Also S(1) = [(p � 1)=2mod2] = 1 becausep = 3mod8. Thus,
gcd(xp � 1; S(x)) = 1 and hencec�(x) = xp � 1 andL = p.

REFERENCES

[1] L. D. Baumert,Cyclic Difference Sets. New York: Springer-Verlag,
1971.

[2] C. Ding, “Linear complexity of generalized cyclotomic binary se-
quences of order 2,”Finite Fields Their Applic., vol. 3, pp. 159–174,
1997.

[3] C. Ding, T. Helleseth, and W. Shan, “On the linear complexity of Le-
gendre sequences,”IEEE Trans. Inform. Theory, vol. 44, pp. 1276–1278,
May 1998.

[4] J.-H. Kim and H.-Y. Song, “Existence of cyclic Hadamard difference
sets and its relation to binary sequences with ideal autocorrelation,”J.
Commun. and Networks, vol. 1, no. 1, pp. 14–18, Mar. 1999.

[5] J.-H. Kim, M. Shin, and H.-Y. Song, “Trace representation of Legendre
sequences,”Des., Codes Cryptogr., to be published.

[6] S. W. Golomb, Shift Register Sequences. San Francisco, CA:
Holden-Day, 1967. Revised edition: Laguna Hills, CA: Aegean Park,
1982.

[7] S. W. Golomb and H.-Y. Song, “A conjecture on the existence of cyclic
Hadamard difference sets,”J. Statist. Planning and Infer., vol. 62, pp.
39–41, 1997.

[8] M. Hall, Jr., “A survey of difference sets,”Proc. Amer. Math. Soc., vol.
7, pp. 975–986, 1956.

[9] K. Ireland and M. Rosen,A Classical Introduction to Modern Number
Theory, 2nd ed. New York: Springer-Verlag, 1990.

[10] R. Lidl and H. Neiderreiter, “Finite fields,” inEncyclop. Math. Its Ap-
plic.. Reading, MA: Addison-Wesley, 1983, vol. 20.

[11] J.-S. No, H.-K. Lee, H. Chung, H.-Y. Song, and K. Yang, “Trace rep-
resentation of Legendre sequences of Mersenne prime period,”IEEE
Trans. Inform. Theory, vol. 42, pp. 2254–2255, Nov. 1996.

[12] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt,Spread Spec-
trum Communications. Rockville: Comput. Sci., 1985. Revised edi-
tion: New York: McGraw-Hill, 1994.

[13] H.-Y. Song and S. W. Golomb, “On the existence of cyclic Hadamard
difference sets,”IEEE Trans. Inform. Theory, vol. 40, pp. 1266–1268,
July 1994.

[14] R. Turyn, “The linear generation of the Legendre sequences,”J. Soc.
Ind. Appl. Math., vol. 12, no. 1, pp. 115–117, 1964.

On the Achievability of the Cramér–Rao Bound for Poisson
Distribution

Ron Aharoni and Delman Lee, Member, IEEE

Abstract—This correspondence examines the Cramér–Rao (CR) bound
for data obtained in emission tomography. The likelihood function involved
is the combined probability of independent Poisson random variables, the
expectation of each being a linear function of the parameter vector .
We investigated the achievability of the CR bound in the interior and on
the boundary of the domain of the problem. For the former, we found that
the CR bound is achievable if and only if the vectors ’s are obtained from
a basis for , by repeating some vectors, multiplied by constant factors.
A similar result holds for the boundary case. The practical implication of
the achievability condition is that the CR bound is not attainable for typical
emission tomographic systems.

Index Terms—Achievability, constrained Cramér–Rao (CR) bound,
emission tomography.

I. INTRODUCTION

We wish to study the behavior of the Cramér–Rao (CR) bound
in emission tomography. The case of transmission tomography was
studied by [1], [2]. In emission tomography, one injects into the
subject some photon-emitting substance and obtains a vector of
measurements,yyy = (y1; . . . ; yP )

T 2 P , of the photon emissions in
P directions (calledprojection lines). is the set of natural numbers
including zero. The problem is to obtain a spatial map of the density
of the injected material from the projection line measurements. The
probability distribution which emerges is (see, e.g., [3]–[5])

p(yyyj���) =

P

i=1

e�hccc ;���ihccci; ���i
y

yi!
(1)

where��� = (�1; . . . ; �N)T , and�i is the average number of photon
emissions in theith pixel detected by the system. TheP � N matrix
C = (ccc1; . . . ; cccP )

T is called theprojection matrix. An elementcij
of the projection matrix is the ratio of the mean number of emissions
detected at theith projection line from thejth pixel to the total number
of emissions detected at theith projection line.

For the distribution in (1) to make mathematical sense, we only re-
quirehccci; ���i 0 for all i, whereccci; ��� 2 N . (Note that the limit of
hccci; ���i

y ashccci; ���i ! 0 is well defined. That is,hccci; ���iy ! 1 for
yi = 0, andhccci; ���iy ! 0 for yi > 0. Thus, the product term in (1)
can be regarded as the Kronecker delta function whenhccci; ���i = 0.)
For the distribution in (1) to reflect the physical situation in emission
tomography, we have the following physical constraints:�i 0 and
cij 0 for all i; j. We shall investigate the CR bound without the
physical constraints for most part of the correspondence, and return to
the implication of the physical constraints in Section III-C.
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