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Abstract. In this paper, we discuss some methods of constructing
frequency/time hopping (FH/TH) sequences over GF (pk) by taking suc-
cessive k-tuples of given sequences over GF (p). We are able to character-
ize those p-ary sequences whose k-tuple versions now over GF (pk) have
the maximum possible linear complexities (LCs). Next, we consider the
FH/TH sequence generators composed of a combinatorial function gen-
erator and some buffers. We are able to characterize the generators whose
output FH/TH sequences over GF (pk) have the maximum possible LC
for the given algebraic normal form.

1 Introduction

In a peer-to-peer frequency/time hopping (FH/TH) spread spectrum communi-
cation system, an interceptor may try to synthesize the entire FH/TH pattern
from some frequency/time slots successively observed. That is, the interceptor
may try to synthesize the linear feedback shift register (LFSR) [1][2] that can
generate the next slots of the FH/TH pattern using, say, Berlekamp-Massey
(BM) algorithm [3] over a finite field.

Let L be the linear complexity (LC) [4][5] of an FH/TH sequence. When
the interceptor observes successive 2L frequency/time slots, he can successfully
synthesize the next frequency/time slots as long as the same FH/TH sequence is
used. Therefore, from the view point of the system designers, the system should
change from one FH/TH sequence to another before 2L slots of the sequence are
used, and the LC of the FH/TH sequences in use should be as large as possible.

Note that any FH/TH sequences are non-binary in general since there are
usually more than 2 frequency/time slots available. In fact, an FH/TH commu-
nication systems using a few hundreds, or even a few thousands frequency/time
slots are common in practice. It is well-known that the number of frequency/time
slots affects directly the processing gain [2] of the FH/TH spread spectrum com-
munication systems, at the price of the hardware complexity. Therefore, it is
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necessary to design non-binary sequences (i) with “large” LC, and (ii) over
“large” alphabet, but (iii) with “little” increase in the hardware complexity.

In this paper, we consider the simple way of constructing a non-binary (pk-ary)
sequence T over a large alphabet from a given (p-ary) sequence S over a small
alphabet, simply reading its successive k-tuples. By increasing the parameter
k, one may obtain a sequence over as large alphabet as one wishes. We believe
that this method is so simple to construct a pk-ary sequence compared with
a construction over GF (pk) because the multiplications over GF (pk) is much
more complex than those over GF (p) in the LFSR constructions which is general
methods in the hardware systems. In this view point, there will be no significant
increase in the complexity in actual hardware design. Therefore, this method
satisfies the last two conditions listed in the previous paragraph.

On the other hand, we have to be very careful in analyzing the LC of the new
sequences, including the definition of the LC of T over k-tuples over GF (p) which
is not a field any more. One way to solve this problem is to interpret the k-tuples
over GF (p) as elements of GF (pk). In this case, it is not much surprising to observe
that two different basis may result in two different LC of T (now overGF (pk)), and
hence, the LC of T depends on the choice of basis (of GF (pk) over GF (p)).

We are here trying to rule out any possibility that the decrease in its LC using
some other basis than that used in the design might help the intercepter to track
the FH/TH sequence, assuming that the FH/TH sequence T with its LC equal
to L (using the basis used in the design process) is used for the duration of 2L−1
slots.

Given any one basis, it is clear that the LC of T is at most that of S. We
are able to characterize those p-ary sequences S whose k-tuple versions T now
over GF (pk) have the same minimal polynomials [4][5] as S, and therefore, the
same LC as S (that is the maximum possible), for any choice of basis of GF (pk)
over GF (p). This leads to the construction of pk-ary sequences with minimal
polynomials essentially over GF (p).

We apply the above characterization into two sequences with as large as pos-
sible period when the number of registers, r, is given: binary de Bruijn sequences
of period 2r [6] and p-ary m-sequences of period pr − 1.

We consider the FH/TH sequence generators composed of a combinatorial
function generator [7] and some buffers. We are able to characterize the FH/TH
sequence generators which guarantee that a combinatorial function sequences,
S, over GF (p) have the maximum possible LC for the given algebraic normal
form and that k-tuple versions T of S now over GF (pk) have the same mini-
mal polynomials as S, and therefore, the same LC as S (that is the maximum
possible) for any choice of basis of GF (pk) over GF (p).

2 Constructions of Sequences over GF (pk) with Minimal
Polynomials over GF (p)

Let GF (q) be the finite field with q elements, and let p be a prime. Consider a
given sequence S = {sn|n = 0, 1, 2, ...} over GF (p). Let k be a positive integer,
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and define a new sequence (an FH/TH sequence) T (k, S) = {tn|n = 0, 1, 2, ...}
based on S by the following:

tn = (sn, sn−1, . . . , sn−k+1) . (1)

Then, it is clear that the sequence T (k, S) is over GF (p)k, the k-tuple vector
space over GF (p). By using some but fixed basis such as a simple polynomial
basis given by

{αk−1, αk−2, . . . , α, 1}, (2)

where α is a primitive element of GF (pk), one can regard the sequence T (k, S)
being over a field GF (pk). This is a straightforward and simple way of enlarging
the size of alphabet over which a sequence is.

Proposition 1. The LFSR that generates a sequence S = {sn} over GF (p)
also generates T (k, S) over GF (pk) as defined in (1) regardless of the choice of
basis. The converse holds provided that the characteristic polynomial [4][5] that
generates T over GF (pk) is essentially over GF (p).

Proof. Obvious. ��

Example 1. A ternary sequence S with period 26 is given by

0 0 1 1 1 0 2 1 1 2 1 0 1 0 0 2 2 2 0 1 2 2 1 2 0 2 0 0 . . . .

Then the sequences T (3, S) and T (4, S) according to (1) are given by the fol-
lowing:

T (3, S) = 000 000 100 110 111 011 201 120 112 211 . . . ,

T (4, S) = 0002 0000 1000 1100 1110 0111 2011 1201 1120 2112 . . . .

Note that both T ’s as well as S are generated by the LFSR shown in Fig. 1 with
connection coefficients over GF (3).

Proposition 1 does not guarantee that the LFSR for T (k, S) over GF (pk), k ≥ 2,
is necessarily the shortest possible even if it is the shortest for S over GF (p),
but that the LC of T (k, S) is at most that of S. In fact, the shortest LFSR
for T (k, S) over GF (pk), k ≥ 2, (and hence the LC of T ) cannot be uniquely
determined unless a basis of GF (pk) is fixed. Following example shows this.

1 2

Fig. 1. The LFSR generating S and T ’s of Example 1
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Example 2. (a) A binary sequence S1 with period 63 is given by

110010000011111110101001001001101010111011011011101001111110010 . . . .

The LC of S1 over GF (2) is 62, but that of T (3, S1) over GF (23) is 60 with
respect to any polynomial basis as in (2). (b) A binary sequence S2 with period
63 is given by

010111111100110000011011111101010011111100011001110100101001011 . . . .

The LC of T (3, S2) over GF (23) is 55 or 53 with respect to the polynomial basis
as in (2) using x3 + x + 1 or x3 + x2 + 1, respectively.

A question at this point is the following: is it possible that the shortest LFSR
that generates S over GF (p) is indeed the shortest LFSR that generates T (k, S)
over GF (pk) with respect to some basis of GF (pk) over GF (p) for k ≥ 2 ? If it
is possible to characterize such p-ary sequences S, then T (k, S) over GF (pk) has
the same minimal polynomial as S and hence it is over GF (p).

Lemma 1. [4] (i) The minimal polynomial of a sequence over GF (q) divides any
characteristic polynomial of the LFSR that generates the sequence over GF (q).
Therefore, it is uniquely determined up to the multiplication by a constant. (ii) An
irreducible polynomial over GF (q) of degree d remains irreducible over GF (qk)
if and only if k and d are relatively prime.

Theorem 1. Let the minimal polynomial C(x) of S = {sn} over GF (p) be
given by C(x) =

∏
i∈I(fi(x))mi for some irreducible polynomials fi(x) of degree

di over GF (p), some positive integers mi, and some index set I. Let T (k, S)
over GF (pk) be defined as in (1) with respect to some but fixed basis for k ≥ 1.
Then, (i) the shortest LFSR that generates S is also the shortest LFSR that
generates T (k, S) over GF (pk), and therefore, their LCs are same, if k and di

are relatively prime for all i ∈ I. Furthermore, (ii) it is also the shortest LFSR
of T (k, S) over GF (pm), and therefore, their LCs are same, for any m ≥ k such
that m and di are relatively prime for all i ∈ I.

Proof. (i) The LFSR with C(x) also generate T (k, S) over GF (pk) by Proposi-
tion 1. Suppose that the degree of C(x) is not the least for T (k, S). Then the
shortest LFSR with characteristic polynomial C′(x) exists and C′(x) divides
C(x) by Lemma 1(i). C′(x) =

∏
i∈I(fi(x))si , where si is a non-negative integer,

0 ≤ si ≤ mi for all i ∈ I, and
∑

i∈I si <
∑

i∈I mi by Lemma 1(ii). On the other
hand, the polynomial C′(x) =

∏
i∈I(fi(x))si is over GF (p), and Proposition 1

(the converse part) implies that C′(x) is also a characteristic polynomial for S
over GF (p) which is a desired contradiction. (ii) Furthermore, if we regard each
term of T (k, S) over GF (pm) for any m ≥ k such that m and di are relatively
prime by inserting so many 0’s at some fixed positions, all the previous argu-
ments will be similarly applied. ��

The converse of Theorem 1 is not generally true. We are able to construct pk-
ary FH/TH sequences as in Theorem 1 whose LC are the same as the original
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(that is the maximum possible) with respect to any basis from p-ary sequences.
Thus, if the p-ary sequences have large LC, the resulting FH/TH sequences have
the same large LC as the original with respect to any basis. We would like to
emphasize the following two cases to which Theorem 1 applies.

Corollary 1. (i) For a p-ary m-sequence S of period pr − 1 with p a prime, the
shortest LFSR that generates S is also the shortest LFSR that generates T (k, S)
over GF (pk) as defined in (1) with respect to any basis if k is relatively prime
to r. Furthermore, it is also the shortest LFSR of T (k, S) over GF (pm) for any
m ≥ k which is relatively prime to r. (ii) If a binary sequence S has a period 2r

(for example, binary de Bruijn sequences), then the shortest LFSR that generates
S is also the shortest LFSR that generates T (k, S) over GF (2k) as defined in (1)
for any positive integer k. Furthermore, it is also the shortest LFSR of T (k, S)
over GF (2m) for any m ≥ k.

Proof. (i) Obvious. (ii) We note that the minimal polynomial C(x) of a binary
sequence S with period 2r is of the form (1 + x)τ for some positive integer τ [6].

��

For a binary de Bruijn sequence, S, with period 2r and large LC which is at
least 2r−1 + r [6], T (k, S) over GF (2k) as defined in (1) has the same large LC
as S by Corollary 1(ii). In addition, the symbol distribution of the T (k, S) in
one period is uniform, that is any symbol of the T (k, S) appears exactly 2r−k

times, r≥k, in one period. In reality, the finite field of characteristic 2 would
be a good choice for the algebraic structure of FH/TH sequences because the
computations over characteristic 2 are most efficiently implemented as hardware
systems and the usual practice follows this idea. In above three points, T (k, S)
from binary de Bruijn sequences would be good candidates for FH/TH sequences
in a peer-to-peer FH/TH spread spectrum communication system.

Example 3. A binary sequence S with period 16 is given by

0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 . . . .

An 8-ary sequence T (3, S) with k = 3 over GF (8) becomes

000 000 000 000 100 010 101 110 111 111 111 111 . . . .

An 8-ary sequence T ′(3, S) over GF (16) becomes

0000 0000 0000 0000 0100 0010 0101 0110 0111 0111 0111 0111 . . . .

Here, the symbol 0 is padded at the leftmost position of the every term of
T (3, S), and the resulting 4-tuples are regarded as the elements of GF (16). A
16-ary sequence T (4, S) becomes

0001 0000 0000 0000 1000 0100 1010 1101 1110 1111 1111 1111 . . . .

All these sequences have the same minimal polynomial and the corresponding
LFSR is shown in Fig. 2.
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Remark 1. Some interesting discussions are given in [8] and [9] which are meth-
ods of constructing pk-ary m-sequences using several p-ary m-sequences of the
same period. We note that the resulting m-sequences over GF (pk) do not have
the same minimal polynomial as the component p-ary m-sequences. In [9], for
example, if the minimal polynomial C(x) of the component p-ary m-sequence
over GF (p) has degree kn, then the minimal polynomial of resulting pk-ary
m-sequence over GF (pk) has degree n, and in fact, it is a factor of C(x) over
GF (pk).

Remark 2. Some interesting discussions are given in [10] which establish a lower
bound on the LC of a multisequence over GF (qk) in terms of the joint LC of its
k element sequences of period N over GF (q). We note that he characterize the
period, N , of which the LC of a multisequence is the same as the joint LC of
element sequences.

Now, let U = {un|n = 0, 1, 2, ...} be a p-ary k-tuple FH/TH sequence in gen-
eral. In order to determine its minimal polynomial and therefore, LC of U over
GF (pk), we need to fix one basis for BM algorithm. Following theorem charac-
terizes those U which do not need this.

Theorem 2. Let U = {un|n = 0, 1, 2, ...} be a p-ary k-tuple sequence in gen-
eral, where un = (u(1)

n , u
(2)
n , . . . , u

(k)
n ). Let a basis of GF (pk) over GF (p) be

fixed, and the minimal polynomial C(x) of U over GF (pk) using BM algorithm
be determined to be of the form

∏
i∈I(fi(x))mi , where fi(x) are irreducible poly-

nomials of degree di over GF (p), mi are positive integers, and I is some index
set. Then, C(x) is a uniquely determined minimal polynomial of U over GF (pk)
regardless of the choice of basis, if k and di are relatively prime for all i ∈ I.
Furthermore, C(x) is the unique minimal polynomial of U over GF (pm) for any
m ≥ k using any basis such that m and di are relatively prime for all i ∈ I.

Proof. Suppose C′(x) is the corresponding minimal polynomial of U now over
GF (pk) with respect to another basis. Then, C′(x) must divide C(x) over GF (pk)
by Lemma 1(i), since C(x) also generates U over GF (pk) with respect to an-
other basis. Using the same arguments as in the proof of Theorem 1, we have a
contradiction unless C′(x) = C(x). ��

Fig. 2. The shortest LFSR generating S and three T ’s of Example 3
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3 Frequency/Time Hopping Sequence Generators for
Large Linear Complexities

We pay attention to the construction of S over GF (p) with large LC. When
S(i) = {s

(i)
n |n = 0, 1, 2, ...}, i = 1, 2, . . . , N , are sequences over GF (p), a termwise

product sequence S =
∏N

i=1 S(i) = {sn|n = 0, 1, 2, ...} over GF (p) based on
S(i), i = 1, 2, . . . , N , is defined as

sn =
N∏

i=1

s(i)
n (multiplication in GF (p)) . (3)

It is well-known that the LC of a termwise product sequence defined above is at
most the product of the LCs of multiplied sequences.

Lemma 2. [5] Let Y = {yn} and Z = {zn} be sequences over GF (p) with some
irreducible minimal polynomials CY (x) and CZ(x) of degree l and m, respec-
tively. If l and m are relatively prime, then S = Y Z over GF (p) as defined
in (3) has the irreducible minimal polynomial of degree l × m.

Corollary 2. Let S = Y Z be a sequence over GF (p) as constructed in Lemma
2. If l×m and k are relatively prime, then T (k, S) over GF (pk) as defined in (1)
has the same minimal polynomial as S.

Proof. It is obvious by Lemma 2 and Theorem 1. ��

Example 4. The irreducible minimal polynomial of Y and Z over GF (2) is
CY (x) = x4+x+1 and CZ(x) = x3+x+1, respectively. The irreducible minimal
polynomial of S = Y Z over GF (2) as defined in (3) is x12+x9+x5+x4+x3+x+1
whose degree is 12 = 3×4 because gcd(3, 4) = 1. T (k, S) over GF (2k) as defined
in (1) has the same minimal polynomial as S for k relatively prime to 12.

We consider the general case of Lemma 2, that is the case of termwise product
sequences based on arbitrary number of sequences with general minimal poly-
nomials composed of irreducible factors.

Lemma 3. [5] Let S(i), i = 1, 2, . . . , N , be sequence over GF (p) with a min-

imal polynomial CS(i)(x) of degree M (i), that divides xpm(i)−1 − 1 for some
m(i) and contains no linear factor. For any pair of distinct roots, α and β,
of CS(i)(x), i = 1, 2, . . . , N , αβ−1 /∈ GF (p). If m(i), i = 1, 2, . . . , N , are pair-
wise relatively prime, then S =

∏N
i=1 S(i) over GF (p) as defined in (3) has the

minimal polynomial of degree M =
∏N

i=1 M (i).

The above lemma characterizes those LFSRs whose termwise product sequence
has the maximum possible LC, that is the product of the LCs of multiplied
sequences. We note that αβ−1 never be in GF (p) for any pair of distinct roots,
α and β, of a minimal polynomial CS(i)(x), i = 1, 2, . . . , N , for the case of p = 2.
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Corollary 3. Let S =
∏N

i=1 S(i) be a sequence over GF (p) as constructed in
Lemma 3. If

∏N
i=1 m(i) and k are relatively prime, then T (k, S) over GF (pk) as

defined in (1) has the same minimal polynomial as S.

Proof. Let CS(x) be the minimal polynomial of S, then the degree of any irre-
ducible factor of CS(x) is of the form

∏N
i=1 r(i), where r(i)|m(i), by Lemma 3

and Theorem 1 completes the proof. ��

Example 5. The minimal polynomial of Y over GF (2) is CY (x) = x3 + x2 + 1
that divides x23−1 −1 and CY (1) = 1. The minimal polynomial of Z over GF (2)
is CZ(x) = x6+x3+x2+x+1 that divides x24−1−1 and CZ(1) = 1. The minimal
polynomial of S = Y Z over GF (2) as defined in (3) is x18 + x14 + x12 + x11 +
x10 +x9 +x6 +x4 +x3 +x2 +1 whose degree is 18 = 3×6 because gcd(3, 4) = 1.
T (k, S) over GF (2k) as defined in (1) have the same minimal polynomial as S
for k relatively prime to 3 × 4.

Now, we consider the FH/TH sequence generator composed of a combinatorial
function generator [7] and k buffers shown in Fig. 3. Let a combinatorial function
sequence, S, over GF (p) by a combinatorial function, f , (that would make S
have large LC) be represented in the algebraic normal form given by

sn = f(s(1)
n , s(2)

n , . . . , s(N)
n )

= a0 +
N∑

i=1

ais
(i)
n +

N∑

i=1

N∑

j=i+1

aijs
(i)
n s(j)

n + . . . + a12...Ns(1)
n s(2)

n . . . s(N)
n ,

(4)

where S(i), i = 1, 2, . . . , N , are sequences over GF (p) and the coefficients of f
are elements of GF (p). We note that the algebraic normal form as defined in
(4) cannot represent all combinatorial functions. The maximum possible LC of a
combinatorial function sequence, S, for the given algebraic normal form is given
by

M = F (M (1), M (2), . . . , M (N)), (5)

Fig. 3. Frequency/Time hopping sequence generators for large linear complexities



394 Y.-P. Hong and H.-Y. Song

where F (M (1), M (2), . . . , M (N)) is defined as (4) with a coefficient being 0 if it
is 0 or 1 otherwise and M (i) is the LC of S(i), i = 1, 2, . . . , N , and operations of
F are over the integers.

R. A. Rueppel characterize those LFSRs such that a combinatorial function
sequence, S, has the maximum possible LC for the given algebraic normal form
[5]. In the previous section, we characterize those p-ary sequences, S, whose k-
tuple versions, T (k, S), now over GF (pk) have the maximum possible LCs. In this
view point, we focus on the relations between the above two characterizations.
We are able to characterize those LFSRs such that a resulting k-tuple sequence
(an FH/TH sequence), T (k, S), has the maximum possible LC, M as defined
in (5). That is, we are able to construct FH/TH sequences with large LCs by
the generators shown in Fig. 3.

Lemma 4. [5] Let S(i), i = 1, 2, . . . , N , be sequences over GF (p) with minimal

polynomials CS(i)(x) of degree M (i), that divide xpm(i)−1 − 1 for some m(i) and
contain no linear factor. For any pair of distinct roots, α and β, of CS(i)(x), i =
1, 2, . . . , N , αβ−1 /∈ GF (p). If m(i), i = 1, 2, . . . , N are pairwise relatively prime,
then S over GF (p) as defined in (4) has the minimal polynomial of degree M as
defined in (5) for the given algebraic normal form, f .

Corollary 4. Let S be a sequence over GF (p) as constructed in Lemma 4. If
∏N

i=1 m(i) and k are relatively prime, then T (k, S) over GF (pk) as defined in (1)
has the same minimal polynomial as S.

Proof. Let CS(x) be the minimal polynomial of S, then the degree of any irre-
ducible factor of CS(x) is of the form

∏N
i=1 r(i), where r(i)|m(i), by Lemma 4

and Theorem 1 completes the proof. ��
Example 6. The minimal polynomial of X , Y , Z over GF (2) is CX(x) = x6 +
x5 + x4 + x3 + x2 + x + 1, CY (x) = x6 + x3 + x2 + x + 1, CZ(x) = x10 + x8 +
x7 + x5 + x3 + x2 + 1 that divides x23−1 − 1, x24−1 − 1, x25−1 − 1 respectively
and contains no linear factor. The minimal polynomial of S over GF (2) defined
by sn = f(xn, yn, zn) = 1 + xn + yn + zn + xnyn + ynzn + znxn + xnynzn as (4)
is of degree 539 = M(6, 6, 10) = 1 + 6 + 6 + 10 + 6 · 6 + 6 · 10 + 10 · 6 + 6 · 6 · 10
as defined in (5) because 3, 4, and 5 are pairwise relatively prime. T (k, S) over
GF (2k) as defined in (1) have the same minimal polynomial as S for k relatively
prime to 3 · 4 · 5. For example, T (7, S) is a 128-ary FH/TH sequence whose LC
is 539.

We believe that FH/TH sequences as constructed in Corollary 4 must be a good
candidates of FH/TH patterns in a peer-to-peer FH/TH spread spectrum com-
munication system for the following good reasons: (i) with “large” LC, and (ii)
over “large” alphabet, but (iii) with “little” increase in the hardware complexity.

4 Concluding Remarks

We believe that the finite field of characteristic 2 would be a good choice for
the algebraic structure of FH/TH sequences because the computations over
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characteristic 2 are most efficiently implemented as hardware systems and the
usual practice follows this idea.

We have tried several other options but failed to extract any further rea-
sonable behavior of non-binary FH/TH sequences over GF (pk) whose minimal
polynomial and therefore, LC are uniquely determined regardless of the choice
of basis other than those given in Theorem 1. Theorem 2 is slightly more general
in that the p-ary k-tuple FH/TH sequences are not necessarily constructed as a
k-tuple version of a p-ary sequence.

We note that Corollary 4 characterize those FH/TH sequence generators such
that a combinatorial function sequence, S, and a resulting k-tuple sequence
(an FH/TH sequence), T (k, S), has the maximum possible LC for any given
algebraic normal form, f , to resist the only BM attack. So, it is proper that we
use the algebraic normal form, f , that has desired cryptographic properties such
as correlation immunity, resiliency, nonlinearity, and propagation [7][11][12][13]
to resist other attacks than the BM attack.

We note that the sequence terms of T (k, S) are highly correlated with each
other because tn is the right shifted version of tn−1 with the only new leftmost
component. This correlation between consecutive terms must be a vulnerable
point to some other attacks. But, Theorem 1 and all corollaries in this paper
also apply equally well to T (k, S) defined by

tn = (sn−σ(0), sn−σ(1), . . . , sn−σ(k−1)), (6)

where σ is any permutation on {0, 1, . . . , k − 1}. A further generalization is also
possible by using any integers instead of σ(i) for each i. Therefore, we are able to
solve the correlation problem between consecutive terms by the above method.

References

1. S. W. Golomb, Shift Register Sequences, Revised Edition, Aegean Park Press, La-
guna Hills, CA 92654, 1982.

2. M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum
Communications Handbook, Revised Edition, McGraw-Hill, Inc., 1994.

3. J. L. Massey, “Shift-Register Synthesis and BCH decoding,” IEEE Transactions
on Information Theory, vol. IT-15, no. 1, pp. 122-127, Jan. 1969.

4. R. Lidl and H. Niederreiter, Finite Fields, Second Edition, Encyclopedia of Math-
ematics and Its Applications, vol. 20, Cambridge University Press, 1997.

5. R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, 1986.
6. A. H. Chan, R. A. Games, and E. L. Key, “On the Complexities of de Bruijn

Sequences,” Journal of Combinatorial Theory, Series A 33, pp. 233-246, 1982.
7. S. W. Golomb and G. Gong, Signal Design for Good Correlation for Wireless

Communication, Cryptography, and Radar, Cambridge University Press, 2005.
8. W. J. Park and J. J. Komo, “Relationships Between m-Sequences over GF (q) and

GF (qm),” IEEE Transactions on Information Theory, vol. 35, no. 1, pp. 183-186,
Jan. 1989.

9. G. Gong and G. Z. Xiao, “Synthesis and Uniqueness of m-Sequences over GF (qn)
as n-Phase Sequences over GF (q),” IEEE Transactions on Communications, vol.
42, no. 8, pp. 2501-2505, Aug. 1994.



396 Y.-P. Hong and H.-Y. Song

10. W. Meidl, “Discrete Fourier Transform, Joint Linear Complexity and Generalized
Joint Linear Complexity of Multisequences,” Lecture Notes in Computer Science,
vol. 3486, pp. 101-112, Mar. 2005.

11. T. Siegenthaler, “Correlation-Immunity of Nonlinear Combining Functions for
Cryptographic Applications,” IEEE Transactions on Information Theory, vol. IT-
30, no. 5, pp. 776-780, Sep. 1984.

12. W. Meier and O. Staffelbach, “Nonlinearity Criteria for Cryptographic Functions,”
Lecture Notes in Computer Science, vol. 434, pp. 549-562, 1990.

13. B. Preneel, W. V. Leekwijck, and L. V. Linden “Propagation Characteristics of
Boolean Functions,” Lecture Notes in Computer Science, vol. 473, pp. 161-173,
1990.


	Introduction
	Constructions of Sequences over GF(p^k) with Minimal Polynomials over GF(p)
	Frequency/Time Hopping Sequence Generators for Large Linear Complexities
	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




