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Abstract —It is important to use a better criterion in selection and
discretization of attributes for the generation of decision trees to
construct a better classifier in the area of pattern recognition in order to
intelligently access huge amount of data efficiently. Two well-known
criteria are gain and gain ratio, both based on the entropy of partitions.
We propose in this paper a new criterion based also on entropy, and
use both theoretical analysis and computer simulation to demonstrate
that it works better than gain or gain ratio in a wide variety of situations.
We use the usual entropy calculation where the base of the logarithm
is not two but the number of successors to the node. Our theoretical
analysis leads some specific situations in which the new criterion
works always better than gain or gain ratio, and the simulation result
may implicitly cover all the other situations not covered by the analysis.

Index Terms —Decision-tree generators, attribute selection,
discretization, grouping, gain, gain ratio, normalized gain, entropy.

————————   ✦   ————————

1 INTRODUCTION

THE generation of a decision tree has been used as a method of
machine learning for efficient acquisition of knowledge from mass
amounts of data. Therefore, in the beginning, most of the research
were focused on the study of how to select an attribute among
many possibilities which have symbolic, nominal, and/or cate-
gorical values. In this paper, we propose a new criterion based on
entropy which would overcome the limitation of such well-known
criteria as gain or gain ratio. Using both theoretical analysis and
computer simulation, we demonstrate its efficiency in the discreti-
zation and selection of attributes for the decision-tree generator
whose partitioning approach is less restricted.

Quinlan used the difference of the entropies before and after a
partition as a criterion for attribute selection in ID3 [1] and called it
gain. This criterion has a tendency to prefer the attribute whose
partition is more refined. It not only increases the size of the deci-
sion tree but also increases the error rate for unseen samples [1].
As an alternative, Quinlan modified gain in order to overcome
these problems, and proposed gain ratio which is defined as the
gain calibrated by some measure called IV. The generator that gain
ratio is substituted for gain in ID3 was called ID3-IV [1]. These
days, some of such well-known decision-tree generators as GID3
[2], GID3* [3], C4 [4], and C4.5 [5] have adopted gain ratio as a
criterion for attribute selection. On the other hand, in the area of
pattern recognition, the use of continuous attributes becomes more
and more frequent, and causes a new problem of discretizing

them. Initially, the studies of better criteria in the discretization
and selection of attributes were performed independently, but
later they were joined and studied simultaneously. It seems to be
more appropriate to do this together because the selection of an
attribute is in fact a selection of one of differently discretized (or
grouped) attributes. These days, there are wide varieties of the
above schemes, and C4.5 is known to be the most frequently re-
ferred decision-tree generator.

This paper is organized as follows. Section 2 reviews gain and
gain ratio, as defined by Quinlan, and proposes a new criterion,
called “normalized gain” based also on entropy. Some motivations
and theoretical analysis to justify this new definition are also in
this section. Section 3 describes the process of simulation in detail
and presents its result in a table. Finally, we conclude in Section 4.

2 OLD AND NEW CRITERIA FOR DISCRETIZATION AND
SELECTION OF ATTRIBUTES

In the generation of a decision tree for a classification in a top-
down nonbacktracking style, an important point is to use a bet-
ter criterion in the selection of an attribute among many possi-
bilities. Here, the attribute selection should be interpreted in a
broad sense including discretization. In this section, the entropy
of a partitioned sample set will be briefly discussed, two criteria
based on entropy will be reviewed, and, then, a new criterion
will be proposed.

2.1 Entropy of a Partition
Let a sample set S be composed of k classes c1, c2, ..., ck, having
probabilities p1, p2, ..., pk, respectively. Then, the entropy of S is
defined as
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Here, the unit of the above quantity is “bit” since the number two
is used as the log base. Entropy in (1) is known to be a unique
function which satisfies the four axioms of uncertainty [6] and repre-
sents the average amount of information when coding each class
into a codeword with ideal length according to its probability [7].

In a classification problem, we need to evaluate the entropy of a
given set partitioned by the selected attribute. Let an attribute A

divide S into n disjoint subsets S1, S2, ..., Sn. Then, the entropy
E(A, S) of S partitioned by A is defined as the weighted average of

entropies of subsets Si for i = 1, 2, ..., n. That is, a subset Si now has
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the size of Si. The weight is the relative size of Si to S, and this
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Two important properties of entropy are as follows:

1) if the number of classes is fixed, entropy increases as the
probability distribution of classes becomes more uniform and

2) if the probability distribution of classes is uniform, entropy
increases logarithmically as the number of classes in a sam-
ple set increases.

0162-8828/97/$10.00 © 1997 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• B.H. Jun is with the Department of Computer Science, Kongju National Uni-
versity, 182 Shinkwan-Dong, Kongju City, Chungnam, 314-701, Korea.

 E-mail: bhjun@kcs.kongju.ac.kr.
• C.S. Kim, H.-Y. Song, and J. Kim are with the Department of Electronic Engi-

neering, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Ku, Seoul, 120-
749, Korea. E-mail: hammer@seraph.yonsei.ac.kr; hysong@bubble.yonsei.ac.kr;
jhkim@bubble.yonsei.ac.kr.

Manuscript received 30 May 1996; revised 2 Sept. 1997. Recommended for accep-
tance by T. Ishida.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 105668.



1372 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  19,  NO.  12,  DECEMBER  1997

Therefore, entropy increases a lot more when the number of
classes increases from two to three, for example, than when it in-
creases from eight to nine, provided that the probability distribu-
tion of classes is uniform. One property of entropy of the partition
is the following. If a partition induced on a set S by an attribute A�
is a refinement of a partition by an attribute A, then the entropy
E(A�, S) of the partition induced by A� is never higher than the
entropy E(A, S) of the partition induced by A, that is,

E(A�, S) � E(A, S),

where the equality holds if and only if the class distribution before
and after the partition is maintained identically [8]. The point we
would like to make here is that, as we refine further and further,
the entropy of the partition decreases unless the class distribution
before and after each partition is maintained identically, regardless
of the appropriateness of distinguishing classes.

2.2 Two Criteria Based on Entropy
Quinlan defined gain as

gain Ent EA S S A S, ,2 7 1 6 1 6 �
'                                (3)

and used it as a criterion in attribute selection for ID3 [1]. Because
the entropy of the partition decreases as the partition is refined as
mentioned in the previous subsection, the gain in (3) prefers the
finer partition. In general, however, the decision tree generated
only by the gain is known to be not only complex but also result-
ing in a poor performance in the classification rate.

In the enhanced version of ID3 called ID3-IV, a gain ratio is
used, which is defined as follows [1]. Let an attribute A have val-
ues a1, a2, ..., av, and let the number of samples with value ai of the
attribute A be ui for each i = 1, 2, ..., v, resulting in a probability
distribution
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for each i = 1, 2, ..., v. A function IV on these probabilities is de-
fined as
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and gain ratio is defined as

gain ratio
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One advantage of using the gain ratio in (5) is the following.
The value of IV increases logarithmically as the number of
branches increases provided that the number of samples belonging
to each branch is a constant. Therefore, we could expect that gain
ratio less prefers a finer partition, because it is the gain divided by
IV. Actually, gain ratio was shown to generate decision trees with
improved performance over gain [9] and has been used as the
attribute selection criterion in such well-known algorithms as
GID3, GID3*, C4, C4.5, and so on. On the other hand, gain ratio
increases as the value of IV decreases, provided that the gain re-
mains the same. The value of IV decreases as the number of sam-
ples in each branch becomes less uniform. Therefore, as Mingers
has observed [10], gain ratio has a tendency to prefer less uniform
partition and, hence, generates a decision tree, regardless of the
degree of classification, according only to the distribution of sam-
ples allocated to each branch. We illustrate all these criteria and
their relation in Fig. 1 and the following two examples.

EXAMPLE 1. Let S consist of 10 Os and 10 Xs that are partitioned
by an attribute A into three branches.

The values of gain and gain ratio are the following:
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Fig. 1. A partition of a set of 20 samples into three subsets.

EXAMPLE 2. Let a refinement A� of A be applied to S in Example 1,
resulting in a finer partition as shown in Fig. 2.

The values of gain and gain ratio are the following:
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Fig. 2. A refined partition of a set of 20 samples into four subsets.

2.3 A New Criterion
The starting point is to reconsider the physical meaning of entropy
used in both gain and gain ratio. As far as all of the authors are
aware, the log base two has been used without any theoretical
consideration in calculating the entropy, resulting in the criteria
which are meaningful only in the “binary” partition, in some
sense. However, in general, an attribute may cause an n-ary parti-
tion of the samples, and we argue that the log base n, for n � 2,
should be used in order to better accommodate the characteristics
of the attribute in the classification and discretization. Thus, we
propose the new criterion below.

DEFINITION. Let a sample set S be composed of k classes c1, c2, ..., ck
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with probabilities p1, p2, ..., pk, respectively. Let an attribute A
partition S into n disjoint subsets S1, S2, ..., Sn. Denote
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The normalized gain in the above definition is a “normalized”
gain in the sense that the gain with log base two is divided by
log2n and has an obvious relation

normalized gain
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In the remainder of this section, we will argue that, in some
situations, the normalized gain is a better criterion than the gain or
the gain ratio in the selection of an attribute in the process of gen-
erating a better decision tree. Roughly speaking, the use of the
normalized gain can be interpreted as asking only the minimum
expected number of n-ary questions in order to determine the out-
come of an experiment governed by a random variable with prob-
abilities P1, P2, ..., Pn. It is obvious that this number of n-ary ques-
tions becomes much smaller than the minimum expected number
of binary questions to be asked for the same purpose. Specifically,
we consider the following two situations summarized as theorems.

THEOREM 1. Let a sample set S be made up of k classes c1, c2, ..., ck with
probabilities p1, p2, ..., pk, respectively. Let an attribute A (and B,
respectively) partition S into m (and n, respectively) disjoint sub-
sets. If each subset by A (and also by B) contains samples belong-
ing to exactly one class, and if n > m � 2, then

1) gain(A, S) = gain(B, S);
2) normalized gain(A, S, m) > normalized gain(B, S, n); and
3) gain ratio(A, S) > gain ratio(B, S) if and only if IV(A, S) < IV(B, S).

PROOF. Since each subset contains samples belonging to exactly
one class,

E(A, S) = E(B, S) = 0.

Therefore,

gain(A, S) = Ent(S) = gain(B, S),

and
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Finally, since m � 2, IV(B, S) > 0, and IV(A, S) > 0. Therefore,
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if and only if IV(A, S) < IV(B, S). �

EXAMPLE 3. A situation in which normalized gain works better

than gain and gain ratio is shown in Fig. 3.

                        gain(A, S) = 0.918 = gain(B, S)
normalized gain(A, S, 2) = 0.459 > normalized gain(B, S, 3) = 0.395

IV(A, S) = 1.918 > IV(B, S) = 1.631
gain ratio(A, S) = 0.479 < gain ratio(B, S) = 0.563

Fig. 3. Normalized gain is better than gain and gain ratio.

We would like to argue that the normalized gain is a better
criterion than both gain and gain ratio in some situations satisfied
by the assumptions in Theorem 1. First, normalized gain is always
better than gain. Second, normalized gain is a better criterion than
gain ratio if IV(A, S) > IV(B, S). We would like to argue that the
condition IV(A, S) > IV(B, S) can be sometimes satisfied under the
assumption of Theorem 1 even though m < n, as shown in Example
3. In the following theorem, we could think of another situation in
which normalized gain and gain work better than gain ratio.

THEOREM 2. Let a sample set S be made up of k classes c1, c2, ..., ck with
probabilities p1, p2, ..., pk, respectively. Let an attribute A and an-
other attribute B both partition S into the same number, say n � 2,
of disjoint subsets such that each subset by A contains samples
belonging to exactly one class, and that at least one subset by B
contains samples belonging to two or more classes. Then,

1) gain(A, S) > gain(B, S),
2) normalized gain(A, S, n) > normalized gain(B, S, n), and
3) gain ratio(A, S) < gain ratio(B, S) if and only if
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PROOF. The first and the second assertions are obvious. For the
third, recall that
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Some remarks should be followed on the conclusions of Theo-
rem 2. First, in the situation satisfied by the assumptions in Theo-
rem 2, normalized gain is again a better criterion than gain ratio,
and both gain and normalized gain are equally good criteria. Sec-
ond, one may be interested in the situation as to when the condi-
tion in (7) can be satisfied. It is easy to check that

0 1� �

E

Ent

B S

S

,1 6

1 6

because E(B, S) is the weighted average of the entropies of subsets
of S, as defined in (2). Now, if IV(A, S) < IV(B, S), then the right-
hand side of (7) becomes negative and the inequality (7) will not
be satisfied at all. It means that the partition by the attribute B
looks more like the uniform partition than that by A. On the other
hand, if IV(A, S) > IV(B, S), that is, if the partition by the attribute
A looks more like the uniform partition than that by B, the right-
hand side of (7) becomes positive. Now, in order to satisfy the
inequality (7) in this situation, the attribute B should give a parti-
tion which looks far from the uniform. One such case is illustrated
in the example below.

EXAMPLE 4. A situation in which normalized gain works better
than gain ratio is shown in Fig. 4. Here, normalized gain
and gain both works the same.

                        gain(A, S) = 0.547 > gain (B, S) = 0.482
normalized gain (A, S, 3) = 0.345 > normalized gain (B, S, 3) = 0.304
                           IV(A, S) = 1.585 > IV(B, S) = 1.199
               gain ratio(A, S) = 0.345 < gain ratio(B, S) = 0.402

Fig. 4. Normalized gain is better than gain ratio.

3 SIMULATION

In order to show the efficiency of the proposed criterion, we
should compare the performance of various classifiers using deci-
sion trees generated by the same algorithm except for the criterion.
The process of generating recursively a decision tree for each data-
set includes the following steps, in general:

(Step 1) applying an attribute to all samples in the set and list
up the attribute values;

(Step 2) discretizing (or grouping) the samples according to the
attribute values (� This gives a partition on S); and

(Step 3) calculating the value of a predetermined criterion and
selecting the attribute which gives the maximum.

A well-known decision-tree generator C4.5 uses the same crite-
rion in both discretization (second step) and selection (third step)
of an attribute. However, C4.5 uses one of multiple different
methods in the discretization (or grouping) according to the type
of samples. The choice of a method in this step in C4.5 is some-
what optimized for the gain ratio, because it uses only the binary
partition except for the type of samples with nonordered discrete
attribute values. In order to guarantee a fair comparison, we be-
lieve that an n-ary partition should be allowed, and, hence, in our
simulation, a predefined single algorithm (for discretizing and
grouping) was applied throughout every dataset without pruning.
We would like to leave as a future study the optimizing this algo-
rithm including pruning relative to the proposed criterion. We
would like to note that, in our simulation, the second step in the
above process uses the same criterion as in the third step. The sec-

ond step can be described in detail as follows:

(Step 2.1) Take the initial partition DN of samples by splitting at
every class boundary. Let this give N intervals.

(Step 2.2) For n = N ��1, N ��2, N ��3, ..., 2, repeat the following
recursively: In the partition Dn+1, there are n ways to merge
two adjacent intervals. Select the best partition scheme, call
it Dn, relative to the given criterion among these n possibili-
ties each of having n intervals.

(Step 2.3) Select the best partition among N �� 1 partitions
D D DN N, , . . . ,

�1 2  determined in Step 2.2.

Twelve different datasets obtained from the UCI Repository
without any modification have been used for the experiment,
Table 1 shows a summary of characteristics of the datasets, in
which the upper seven sets consist of samples mainly with discrete
attributes, and the remaining five sets consist of samples mainly
with continuous attributes.

TABLE 1
DESCRIPTION OF DATASETS

In this experiment, a cross-validation [11] was performed as
follows. The available data were divided into 10 blocks so as to
make the number of samples and class distribution in each block
as uniform as possible. Ten different classifiers were then built,
each of which was based only on nine blocks and the resulting
classifier was tested on the samples in the remaining block. For
each of 10 classifiers, the three parameters of error rate, number of
leaves, and weighted depth are obtained and then averaged. Here,
the error rate measures the correctness of classification for the test
data, the number of leaves measures the complexity of the result-
ing decision trees and is closely related to the classification rate
[12]. The weighted depth is an average length of paths, each of
which is weighted by the probability of samples allocated to each
leaf, and it measures how fast the classification is performed.

Table 2 represents the average performance of classifiers which
are generated by using gain, gain ratio, normalized gain, respec-
tively, as a single criterion for both discretization and selection of
attributes. As Table 2 clearly shows, we can see that normalized
gain works better than gain or gain ratio for most of the datasets.

4 CONCLUSION

In this paper, we have proposed a new criterion, called normalized
gain, for the selection and discretization of attributes to be used in
the process of generating decision trees. The proposed criterion is
not totally new in the sense that it is based on entropy, but it is
new since it is a “normalized” version of the previously well-
known criterion, the gain.
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We have clearly demonstrated by two theorems those situa-
tions in which normalized gain works better than gain or gain
ratio, and we have done some simulation to demonstrate that
normalized gain works also better for a wide variety of datasets
used in the simulation than gain and gain ratio. Since gain ratio
works better in some situations as the simulation result shows, we
can imagine that it happened in those situations not covered by
the assumptions given in two theorems in Section 2, which seems
to need a further study. We would like to emphasize that normal-
ized gain works better than or at least equally as either gain or
gain ratio does in any situation covered by the assumptions given
in two theorems.

TABLE 2
RESULT OF SIMULATION

Finally, optimization of discretizing or grouping algorithm spe-
cifically for the proposed criterion should be studied in the near
future, so that a comparison can be done between the decision-tree
generator with optimum discretizing or grouping algorithm for
the proposed criterion and that with (possibly different) optimum
algorithm for other well-known criterion.
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