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Existence of Cyclic Hadamard Difference Sets and
its Relation to Binary Sequences with

Ideal Autocorrelation
Jeong-Heon Kim and Hong-Yeop Song

Abstract: Balanced binary sequences with ideal autocorre-
lation are equivalent to (v; k; �)-cyclic Hadamard di�erence
sets with v = 4n � 1; k = 2n � 1; � = n � 1 for some
positive integer n. Every known cyclic Hadamard di�erence
set has one of the following three types of v : (1) v = 4n� 1
is a prime. (2) v is a product of twin primes. (3) v = 2n � 1
for n = 2; 3; � � � . It is conjectured that all cyclic Hadamard
di�erence sets have parameter v which falls into one of the
three types. The conjecture has been previously con�rmed
for n < 10000 except for 17 cases not fully investigated. In
this paper, four smallest cases among these 17 cases are ex-
amined and the conjecture is con�rmed for all v � 3435. In
addition, all the inequivalent cyclic Hadamard di�erence sets
with v = 2n� 1 for n � 10 are listed and classi�ed according
to known construction methods.

Index Terms: Pseudorandom Binary Sequences, Ideal Auto-
correlation, Cyclic Hadamard Di�erence Sets.

I. INTRODUCTION

A binary sequencefa(t)g of periodN is said to have the two-
level ideal autocorrelation property if its autocorrelation func-
tionRa(�) satisfies the following:

Ra(�) =

�
N; if � = 0 mod N;
�1; otherwise;

whereRa(�) is defined as

Ra(�) =

N�1X
t=0

(�1)
at+at+� :

Binary sequences with the ideal autocorrelation are important
because of their various applications to digital communication
systems such as spread spectrum communication systems and
code division multiple access (CDMA) systems [1].

It is well known that if a binary sequence has the two-
level ideal autocorrelation, it must have a periodN with N =
�1(mod 4) and the numbers of ones and zeros differ by 1.
Such a binary sequence is called a Hadamard sequence, and is
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equivalent to a cyclic Hadamard difference set with parameters
v = 4n� 1; k = 2n� 1; � = n � 1 for some integern � 2.
All known Hadamard sequences have periods of the following
three types [2], [3]:

1. N = 4n� 1 is a prime number.
2. N = p(p+ 2) is a product of twin primes.
3. N = 2t � 1, for t = 2; 3; 4; � � � .

There is a conjecture that if a Hadamard sequence exists, the
periodN must be one of the above three types [4]. In [2], it
is reported that there are no other values ofN < 1000 with
Hadamard sequences of period other than those listed above,
except for the six casesN = 399, 495, 627, 783, and 975,
which were not fully investigated. In [3], Song and Golomb
reconfirmed the conjecture for allN < 1000 including these
six cases. Furthermore, it was verified up toN < 10000, ex-
cept for the following 17 cases: 1295, 1599, 1935, 3135, 3439,
4355, 4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135,
9215, 9423. The conjecture becomes more and more interesting
since there seems to be no immediate common property among
the three types ofv listed above and no counterexample has yet
been discovered. In this paper, the four smallest previously un-
known casesv = 1295, 1599, 1935, 3135 are examined and the
conjecture is confirmed for allv � 3435.

Of three types of the periodN , the case ofN = 2n � 1
owes its popularity to simple implementation. There has been
a lot of effort to determine how many inequivalent Hadamard
sequences of periodN = 2n � 1 there exist and to figure out
how to construct them systematically. So far, full search for
these sequences is completed up ton = 10.

II. NON-EXISTENCE OF SOME HADAMARD
SEQUENCES

A Hadamard sequence of periodn = 4N � 1 is known to
be equivalent to a (v; k; �)-cyclic difference set withv = 4n�
1; k = 2n� 1; � = n� 1.

Definition 1: Given a positive integerv, letU denote the set
of residues modv. Let D be ak-subset ofU . One callsD a
(v; k; �)-cyclic difference set if for any non-zerod 2 U , there
are exactly� pairs of(x; y); x; y 2 D such thatd = (x � y)
modv.

A (v; k; �)-cyclic difference set withv = 4n � 1; k = 2n �
1; � = n � 1 is called a cyclic Hadamard difference set and it
induces a binary sequence of periodv = 4n� 1 with the ideal
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autocorrelation, i.e., a Hadamard sequence.

For a cyclic difference setD = fd1; d2; � � � ; dkg, if there
exist somes andt such thatftd1; td2; � � � ; tdkg = fs+ d1; s+
d2; � � � ; s + dkg, then the integert is called a multiplier ofD,
and if s = 0, D is said to be fixed byt. Such a multiplier turns
out to be very useful when one wants to exhaustively search for
all the cyclic difference sets with a given set of parameters. The
following theorem gives a sufficient condition on the existence
of a multiplier of cyclic difference sets.

Theorem 1: [2] Let D be a (v; k; �)-cyclic difference set.
Let d be a divisor ofk � � and suppose that(d; v) = 1 and
d > �. If t is an integer with the property that for each prime
divisorp of d there is an integerj such thatpj = t modv, then
t is a multiplier ofD.

Baumert[2] proved the following theorem which can be used
to prove the non-existence of some cyclic Hadamard difference
sets and can also be used to reduce the computational complex-
ity of an exhaustive search.

Theorem 2: If a (v; k; �)-cyclic difference set exists, then for
every divisorw of v, there exist integersbi(i = 0; 1; 2; � � � ; w�
1) satisfying the diophantine equations

w�1X
i=0

bi = k;

w�1X
i=0

b2i = k � �+ v�=w;

w�1X
i=0

bibi�j = v�=w; for 1 � j � w � 1:

(1)

Here, the subscripti� j is taken modulow.

Basic steps to reach the nonexistence is the following. We
assume first that a cyclic Hadamard difference setD exists. By
Theorem 1, its multiplierm can be determined. For every di-
visor w of v, its cyclotomic cosets can be determined by the
multiplier m. We set some dummy indicatorsbi for each cy-
clotomic coset. There must be some sets ofbi’s satisfying the
three diophantine equations in Theorem 2 if there exists a cyclic
Hadamard difference setD. Thus, if these equations do not pos-
sess any solution for some divisorw, the non-existence is guar-
anteed.

A. Some Computations

If there exists a (1295,647,323)-cyclic Hadamard difference
setD, it must have the multiplier 16 by Theorem 1. There are
155 cyclotomic cosets modulo 1295. One needs to consider the
cyclotomic cosets modulo each divisor of 1295.

Since1295 = 5� 7� 37, if there exists a (1295, 647, 323)-
cyclic Hadamard difference setD, there must be integers sat-
isfying the three diophantine equations in Theorem 2 for each
divisor 5, 7, 37, 35, 185, and 259. Otherwise, one can conclude
that there is no (1295,647,323)-cyclic Hadamard difference set.

For the divisorw = 5, we have the following equations:

4X
i=0

bi = 647;

4X
i=0

b2i = 83981;

4X
i=0

bibi�j = 83657; for 1 � j � 4;

(2)

and0 � bi � 255. There are two solutions forbi’s satisfying
(2), which are

(b0; b1; b2; b3; b4) =

�
(115; 133; 133; 133; 133)
(133; 115; 133; 133; 133)

For the divisorw = 7, we have the following equations:

6X
i=0

ci = 647;

6X
i=0

c2i = 60079;

6X
i=0

cici�j = 59755; for 1 � j � 6;

(3)

and0 � ci � 175. There are two solutions forci’s satisfying
(3), which are

(c0 = 77; c1 = c2 = c4 = 95; c3 = c5 = c6 = 95) and

(c0 = 104; c1 = c2 = c4 = 86; c3 = c5 = c6 = 95):

For the divisorw = 37, we have the following equations:

36X
i=0

di = 647;

36X
i=0

d2i = 11629;

36X
i=0

didi�j = 11305; for 1 � j � 36;

(4)

and0 � d0; d1; � � � ; d36 � 35. There is only one solution.

d0 = 35;

d1 = d7 = � � � = d34 = 17;

d2 = d14 = � � � = d32 = 17;

d3 = d4 = � � � = d36 = 17;

d5 = d6 = � � � = d35 = 17:
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For the divisorw = 185, we have the following equations:

184X
i=0

hi = 647;

184X
i=0

h2i = 2585;

184X
i=0

hihi�j = 2261; for 1 � j � 184:

(5)

Here, we use another dummy indicatorgi which is related to
hi by the following equations:

g0 = h0;
g1 = h10 = h70 = � � � = h160;
g2 = h15 = h20 = � � � = h180;
g3 = h25 = h30 = � � �h175;
g4 = h5 = h35 = � � �h170;
g5 = h111;
g6 = h1 = h16 = � � � = h181;
g7 = h31 = h51 = � � � = h166;
g8 = h11 = h21 = � � � = h176;
g9 = h6 = h56 = � � � = h171;
g10 = h37;
g11 = h7 = h12 = � � � = h182;
g12 = h2 = h32 = � � � = h177;
g13 = h27 = h62 = � � � = h152;
g14 = h17 = h22 = � � � = h167;
g15 = h148;
g16 = h33 = h38 = � � � = h158;
g17 = h18 = h68 = � � � = h168;
g18 = h3 = h28 = � � � = h178;
g19 = h8 = h13 = � � � = h183;
g20 = h74;
g21 = h9 = h34 = � � � = h174;
g22 = h14 = h24 = � � � = h179;
g23 = h4 = h64 = � � � = h184;
g24 = h19 = h54 = � � � = h154;

and0 � gi � 7 for 0 � i � 24. In addition, since185 = 5�37,
gi’s are related tobi’s as follows:

b0 = g0 + 9(g1 + g2 + g3 + g4);

b1 = g5 + 9(g6 + g7 + g8 + g9);

b2 = g10 + 9(g11 + g12 + g13 + g14);

b3 = g15 + 9(g16 + g17 + g18 + g19);

b4 = g20 + 9(g21 + g22 + g23 + g24);

d0 = g0 + g5 + g10 + g15 + g20;

d1 = g1 + g6 + g11 + g16 + g21;

d2 = g2 + g7 + g12 + g17 + g22;

d3 = g3 + g8 + g13 + g18 + g23;

d4 = g4 + g9 + g14 + g19 + g24:

(6)

Recall that(b0; b1; b2; b3; b4) were already determined as
(115, 133, 133, 133, 133) or (133, 115, 133, 133, 133) and
(d0; d1; d2; d3; d4) were also determined as (35, 17, 17, 17, 17).

By executing a series of C programs for a few hours of CPU time
(Intel Pentium PC) collectively, we could confirm that there is
no solution forgi’s satisfying both the diophantine equations (5)
and the above relations (6). Thus, one can conclude that there
does not exist a (1295, 647, 323)-cyclic Hadamard difference
set.

Similarly, the three casesv = 1599, 1935, and 3135 can also
be examined and it turns out that no cyclic Hadamard difference
set withv = 1599, 1935, or 3135 exists. The result may be
summarized as follows.
� Forv = 1599

1. Multiplier is 25.
2. Number of cosets is 176.
3. Number of solutions forw = 3 is 2.
4. Number of solutions forw = 41 is 1.
5. Number of solutions forw = 3� 41 = 123 is 0.

� Forv = 1935
1. Multiplier is 16.
2. Number of cosets is 175.
3. Number of solutions forw = 3 is 1.
4. Number of solutions forw = 43 is 10.
5. Number of solutions forw = 3� 43 = 129 is 0.

� Forv = 3135
1. Multiplier is 49.
2. Number of cosets is 189.
3. Number of solutions forw = 3 is 5.
4. Number of solutions forw = 5 is 1.
5. Number of solutions forw = 3� 5 = 15 is 0.

From all of the above results, the smallest open case now be-
comesv = 3439 which is very special. The above analysis of
the four cases basically depends on the existence of a multiplier.
For the casev = 3439, we do not have any method to determine
a multiplier. So far, we are not even sure of the existence of a
multiplier in this case. The remaining 12 cases up tov < 10000
have relatively many cosets and the ranges of the possible so-
lutions to the diophantine equations are much wider than the
previous four cases. These result in the huge increase of com-
plexity. It seems impossible to finish the exhaustive search in a
reasonable amount of time.

III. CLASSIFICATION OF CYCLIC HADAMARD
DIFFERENCE SETS WITH v = 2n � 1

In practical applications, Hadamard sequences of period2n�
1 are most frequently used. Maximal length sequences, (m-
sequences, in short) also belong to this family [5]. To describe
Hadamard sequences of period2n � 1, one can use the well-
known trace function which is defined as follows [6]:

Definition 2: The trace functionTrm
n(�) is a linear mapping

fromGF (2n) toGF (2m), with mjn , defined as

Trm
n(�) = �+ �2

m

+ �2
2m

+ � � �+ �2
m(n=m�1)

;

where� 2 GF (2n).

Any two Hadamard sequencesa(i) andb(i) of the same pe-
riodN are said to be equivalent if one can find integersd ands
such thata(i) = b(di+s) where(d;N) = 1 and0 � s � N�1.
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Otherwise, we say that they are inequivalent. There have been
some effort to determine the number of inequivalent Hadamard
sequences of period2n � 1 for eachn, which implies the
classification of cyclic Hadamard difference sets (CHDS) with
v = 2n � 1, since every CHDS withv = 2n � 1 is equivalent
to a Hadamard sequence of period2n � 1 by the well-known
correspondence that, for eachi = 0; 1; 2; � � � ; 2n � 2, a(i) = 0
if and only if i 2 D. In this section, all the Hadamard sequences
of period2n � 1 for n = 3; 4; � � � ; 10 are classified and listed
according to the known construction methods.

(7,3,1)-CHDS

There is only one (7,3,1)-CHDS. It is equivalent to anm-
sequence which can be expressed as

s(t) = Tr1
3(�t)

where� is a primitive element ofGF (23).

(15,7,3)-CHDS

There is only one (15,7,3)-CHDS. It is anm-sequence and its
trace representation is

s(t) = Tr1
4(�t)

where� is a primitive element ofGF (24).

(31,15,7)-CHDS

There are two inequivalent (31,15,7)-CHDS. Since 31 is a
prime congruent to 3 mod 4, there must be a Legendre sequence
of period 31. Let� be a primitive element ofGF (25).
� m31(m-sequence):s(t) = Tr1

5(�t).
� L31(Legendre sequence) [7]:s(t) = Tr1

5(�t+�5t+�7t).

(63,31,15)-CHDS

There are two (63,31,15)-CHDS. Let� be a primitive element
of GF (26).
� m63(m-sequence):s(t) = Tr1

6(�t).
� G63(GMW-sequence) [8]:s(t) = Tr1

6(�t + �15t).

(127,63,31)-CHDS

There are six (127,63,31)-CHDS [9]. Their trace representa-
tions are as follows where� is a primitive element ofGF (27).
� m127(m-sequence):s(t) = Tr1

7(�t).
� L127(Legendre sequence) [7]:

s(t) =Tr1
7(�t + �9t + �11t + �13t

+ �15t + �19t + �21t + �31t + �47t):

� H127(Hall’s sextic residue sequence) [10]:

s(t) = Tr1
7(�t + �19t + �47t):

� Miscellaneous sequences [11]–[13]:
� M127-1:s(t) = Tr1

7(�t + �11t + �15t).
� M127-2:s(t) = Tr1

7(�t + �3t + �7t + �19t + �29t).

� M127-3:s(t) = Tr1
7(�t + �5t + �13t + �21t + �29t).

(255,127,63)-CHDS

There are four (255,127,63)-CHDS [14]. Their trace rep-
resentations are as follows where� is a primitive element of
GF (28).
� m255 (m-sequence):s(t) = Tr1

8(�t).
� G255 (GMW-sequence) [8]:

s(t) = Tr1
8(�t + �19t + �53t + �91t):

� Miscellaneous sequences [11]–[13]:
� M255-1:s(t) = Tr1

8(�t + �11t + �19t + �27t + �87t).
� M255-2:s(t) = Tr1

8(�t + �3t + �43t + �91t + �111t).

(511,255,127)-CHDS

There are five (511,255,127)-CHDS [15], [16]. Let� be a
primitive element ofGF (29). Then the corresponding 5 binary
sequences can be written as follows.
� m511(m-sequence):s(t) = Tr1

9(�t).
� G511(GMW-sequence) [8]:

s(t) = Tr1
9(�t + �11t + �43t):

� Miscellaneous sequences [11]–[13], [16]:
� M511-1:s(t) = Tr1

9(�t + �23t + �31t).
� M511-2:

s(t) =Tr1
9(�t + �51t + �57t

+ �83t + �111t + �125t + �183t):

� M511-3:

s(t) =Tr1
9(�t + �7t + �57t + �77t

+ �83t + �103t + �111t + �127t + �183t):

(1023,511,255)-CHDS

There are ten (1023,511,255)-CHDS [17], [18]. Let� be a
primitive element ofGF (210).
� m1023(m-sequence):s(t) = Tr1

10(�t).
� GMW-sequences [8]:
� G1023-1:s(t) = Tr1

10(�t + �63t).
� G1023-2:s(t) = Tr1

10(�t + �219t).
� G1023-3:s(t) = Tr1

10(�t + �101t + �159t + �221t).
� G1023-4:s(t) = Tr1

10(�t + �39t + �157t + �221t).
� G1023-5:

s(t) =Tr1
10(�t + �39t + �47t + �63t

+ �109t + �125t + �159t + �187t):

� Miscellaneous sequences [11]–[13]:
� M1023-1:

s(t) = Tr1
10(�t + �11t + �15t + �39t + �127t):

� M1023-2:

s(t) =Tr1
10(�t + �39t + �47t + �63t

+ �109t + �125t + �159t + �187t):
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� M1023-3:

s(t) =Tr1
10(�t + �41t + �47t

+ �63t + �87t + �125t + �205t):

� M1023-4:

s(t) =Tr1
10(�t + �5t + �9t + �49t + �63t

+ �71t + �111t + �121t + �253t

+ �237t + �191t + �183t + �205t + �245t):
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