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Existence of Cyclic Hadamard Difference Sets and
its Relation to Binary Sequences with
|Ideal Autocorrelation

Jeong-Heon Kim and Hong-Yeop Song

Abstract: Balanced binary sequences with ideal autocorre-
lation are equivalent to (v, k, A\)-cyclic Hadamard difference
sets with v = 4n — 1, k = 2n— 1, A = n — 1 for some
positive integer n. Every known cyclic Hadamard difference
set has one of the following three typesof v : (1) v =4n —1
is a prime. (2) v is a product of twin primes. (3) v =2" —1
for n = 2, 3,.--. It is conjectured that all cyclic Hadamard
difference sets have parameter v which falls into one of the
three types. The conjecture has been previously confirmed
for n < 10000 except for 17 cases not fully investigated. In
this paper, four smallest cases among these 17 cases are ex-
amined and the conjecture is confirmed for all v < 3435. In
addition, all the inequivalent cyclic Hadamard difference sets
with v = 2" — 1 for n < 10 are listed and classified according
to known construction methods.

Index Terms: Pseudorandom Binary Sequences, Ideal Auto-
correlation, Cyclic Hadamard Difference Sets.

I. INTRODUCTION

A binary sequencéu(t) } of periodN is said to have the two-
level ideal autocorrelation property if its autocorrelation fun

tion R,(r) satisfies the following:

N, if 7=0mod N,
Ra(r) = { -1, otherwise,
whereR, (1) is defined as
N-1
Ra(r) = 3 (-1 Fe.
t=0

Binary sequences with the ideal autocorrelation are important
because of their various applications to digital communication
systems such as spread spectrum communication systems al;bg

code division multiple access (CDMA) systems [1].

It is well known that if a binary sequence has the tw

level ideal autocorrelation, it must have a perivdwith N =

equivalent to a cyclic Hadamard difference set with parameters
v=4n —1, k =2n —1, A = n — 1 for some integen > 2.

All known Hadamard sequences have periods of the following
three types [2], [3]:

1. N =4n — lis a prime number.
2. N = p(p + 2) is a product of twin primes.
3. N=2t—1,fort=2,3,4,---.

There is a conjecture that if a Hadamard sequence exists, the
period N must be one of the above three types [4]. In [2], it
is reported that there are no other values\dof< 1000 with
Hadamard sequences of period other than those listed above,
except for the six cased = 399, 495, 627, 783, and 975,
which were not fully investigated. In [3], Song and Golomb
reconfirmed the conjecture for aN < 1000 including these
six cases. Furthermore, it was verified upNo< 10000, ex-
cept for the following 17 cases: 1295, 1599, 1935, 3135, 3439,
4355, 4623, 5775, 7395, 7743, 8227, 8463, 8591, 8835, 9135,
9215, 9423. The conjecture becomes more and more interesting
since there seems to be no immediate common property among
the three types af listed above and no counterexample has yet
%een discovered. In this paper, the four smallest previously un-
known cases = 1295, 1599, 1935, 3135 are examined and the
conjecture is confirmed for all < 3435.

Of three types of the period/, the case ofV = 2" — 1
owes its popularity to simple implementation. There has been
a lot of effort to determine how many inequivalent Hadamard
sequences of perio = 2™ — 1 there exist and to figure out
how to construct them systematically. So far, full search for
these sequences is completed up te 10.

[I. NON-EXISTENCE OF SOME HADAMARD
SEQUENCES

Hadamard sequence of periad= 4N — 1 is known to
be equivalent to auf k, A)-cyclic difference set withh = 4n —

O k=2n—1,A=n—1.

_1(mod 4) and the numbers of ones and zeros differ by ]_DEflnltlon 1: Givena pOSitive integalf, let U denote the set
Such a binary sequence is called a Hadamard sequence, afd fgsidues mod. Let D be ak-subset ofU. One callsD a

(v, k, N)-cyclic difference set if for any non-zewb € U, there
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A = n — 1is called a cyclic Hadamard difference set and it
induces a binary sequence of periog= 4n — 1 with the ideal
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autocorrelation, i.e., a Hadamard sequence. For the divisorw = 5, we have the following equations:

For a cyclic difference seD = {d,ds,---,d;}, if there

exist somes andt such tha{td, , tds,- - ,tdi} = {s+di,s + !

da, -+ ,s + di}, then the integet is called a multiplier ofD, Z b; = 647,

and ifs = 0, D is said to be fixed by. Such a multiplier turns zjo

out to be very useful when one wants to exhaustively search for 2 5
all the cyclic difference sets with a given set of parameters. The ZO b = 83981, (2)

following theorem gives a sufficient condition on the existence

. . . 4
of a multiplier of cyclic difference sets.

> bibi_; =83657, forl<j<4,
Theorem 1: [2] Let D be a ¢, k, \)-cyclic difference set. =0

Let d be a divisor ofk — X\ and suppose thdtl, v) = 1 and ) , L

d > A. If tis an integer with the property that for each primélndO S b; < 255. There are two solutions fds's satisfying

divisor p of d there is an integef such thap’ = ¢t modo, then (2), which are

t is a multiplier of D.

Baumert[2] proved the following theorem which can be used (bo, br, b, by, by) = (115, 133, 133, 133, 133)
to prove the non-existence of some cyclic Hadamard difference ‘"°’ "1 72> 73 "4/ = 1 (133, 115, 133, 133, 133)
sets and can also be used to reduce the computational complex-

ity of an exhaustive search. For the divisorw = 7, we have the following equations:

Theorem 2: If a (v, k, A)-cyclic difference set exists, then for

every divisonw of v, there existintegefg (i = 0, 1, 2,--- ,w— 6
1) satisfying the diophantine equations Z ¢ = AT
(2 bl
i=0
w—1 6
bi =k, > e7 = 60079, (3)
i=0 i=0
w—1 6
S =k — A+ vA/w, (1) > cicioj = 59755, for1<j <6,
=0 (=0
w—1 z
Z bibi—j = vA/w, for1<j<w-—1 and0 < ¢; < 175. There are two solutions faf’s satisfying
=0 (3), which are

Here, the subscript— j is taken modulav.

. . . . =77 =cy=c4=95 =c5 =cg = 95) and
Basic steps to reach the nonexistence is the following. We (co aTaesa BTG )

assume first that a cyclic Hadamard differencel3eixists. By (co =104, c1 = 2 = ¢4 = 86, 3 = ¢5 = ¢ = 95).
Theorem 1, its multipliern can be determined. For every di-

visor w of v, its cyclotomic cosets can be determined by the For the divisonvs = 37, we have the following equations:
multiplier m. We set some dummy indicatobg for each cy-

clotomic coset. There must be some set$,& satisfying the 36

three diophantine equations in Theorem 2 if there exists a cyclic Z d; = 647,

Hadamard difference sé. Thus, if these equations do not pos- i=0

sess any solution for some diviser the non-existence is guar- 36 )
anteed. > di = 11629, (4)
i=0
36
A. Some Computations Zdidi_j = 11305, forl < j < 36,
=0
If there exists a (1295,647,323)-cyclic Hadamard difference _ .
setD, it must have the multiplier 16 by Theorem 1. There a@nd0 < do, di, ---, d3¢ < 35. There is only one solution.
155 cyclotomic cosets modulo 1295. One needs to consider the
cyclotomic cosets modulo each divisor of 1295. doy = 35,
Sincel295 = 5 x 7 x 37, if there exists a (1295, 647, 323)- dy =dy =---=d3y =17,
cyclic Hadamard difference sé?, there must be integers sat- do=diy =+ =dz =17,

isfying the three diophantine equations in Theorem 2 for each Ao —dy = e = doe = 17
divisor 5, 7, 37, 35, 185, and 259. Otherwise, one can conclude s e
that there is no (1295,647,323)-cyclic Hadamard difference set. ds =dg = -+ = dz5 = 17.
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For the divisonv = 185, we have the following equations:

184
> hi =647,
i=0
184

> h? = 2585,
=0

184
> hihi_j =2261, for1<j < 184.
=0

Here, we use another dummy indicatemwhich is related to

h; by the following equations:

go = ho,

g1 = hio = hro = - -+ = hyso,
g2 = his = hao = -+ = higo,
93 = has = hzo = - - hars,
g4 = hs = has = - - hiro,

g5 = hi11,

g6 = h1 = hig = -+ = hig1,
g7 = h31 = hs1 = -+ = hqses,
g8 = hi1 = ha1 = -+ - = hqys,
g9 = he = hsg = -+ - = hir1,
gio = har,

g11 = h7y = hip = -+ - = hyga,
g12 = ho = hgs = -+ = hq7y,
913 = har = hgz = -+ - = hi59,
g14 = hi7 = ha2 = -+ - = hier,
g15 = hias,

g16 = h3z = hag = -+ = hisg,
g17 = hig = hgg = -+ = higs,
g18 = hg = hag = -+ = hyrs,
g19 = hg = hiz3 = -+ - = hig3,
920 = hra,

g21 = hg = h3y = -+ = hyyy,
922 = h1a = hoy = -+ - = harg,
923 = hg = hga = -+ = hig4,
924 = h1g = hsg = -+ - = his4,

(5)

and0 < g; < 7for0 < i < 24. In addition, sincd85 = 5 x 37,

gi's are related t@;’s as follows:

bo = go + 9(g1 + g2 + g3 + 9a),
b1 = g5 +9(g6 + g7 + g3 + 99),
by = g10 +9(g911 + 912 + 913 + g914),
bs = g15 + 9(g16 + g17 + gis + g19),
by = g20 + 9(g21 + g2 + g23 + g24),

do = go + g5 + g10 + 915 + 920,
di = g1+ 96 + 911 + g16 + go1,
dy = g2 + g7 + g12 + g17 + go2,
d3 = g3 + g8 + g13 + g18 + 923,
dy = ga + go + g1a + g19 + go4-

(6)
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By executing a series of C programs for a few hours of CPU time
(Intel Pentium PC) collectively, we could confirm that there is
no solution forg;'s satisfying both the diophantine equations (5)
and the above relations (6). Thus, one can conclude that there
does not exist a (1295, 647, 323)-cyclic Hadamard difference
set.

Similarly, the three casas= 1599, 1935, and 3135 can also
be examined and it turns out that no cyclic Hadamard difference
set withv = 1599, 1935, or 3135 exists. The result may be
summarized as follows.

O Forv = 1599
1. Multiplier is 25.
2. Number of cosets is 176.
3. Number of solutions fow = 3 is 2.
4. Number of solutions fow = 41 is 1.
5. Number of solutions fow = 3 x 41 = 123 is 0.

O Forv =1935
1. Multiplieris 16.
2. Number of cosets is 175.
3. Number of solutions fow = 3 is 1.
4. Number of solutions fow = 43 is 10.
5. Number of solutions fow = 3 x 43 = 129 s 0.
O Forv = 3135
Multiplier is 49.
Number of cosets is 189.
Number of solutions fow = 3 is 5.
Number of solutions fow = 5 is 1.
Number of solutions fow = 3 x 5 = 15is 0.

agrwOdPE

From all of the above results, the smallest open case now be-
comesy = 3439 which is very special. The above analysis of
the four cases basically depends on the existence of a multiplier.
For the case = 3439, we do not have any method to determine
a multiplier. So far, we are not even sure of the existence of a
multiplier in this case. The remaining 12 cases up to 10000
have relatively many cosets and the ranges of the possible so-
lutions to the diophantine equations are much wider than the
previous four cases. These result in the huge increase of com-
plexity. It seems impossible to finish the exhaustive search in a
reasonable amount of time.

Ill. CLASSIFICATION OF CYCLIC HADAMARD
DIFFERENCE SETSWITH v =2" -1

In practical applications, Hadamard sequences of péfied
1 are most frequently used. Maximal length sequences, (
sequences, in short) also belong to this family [5]. To describe
Hadamard sequences of peri?®d — 1, one can use the well-
known trace function which is defined as follows [6]:

Definition 2: The trace functiof’r,,," (-) is a linear mapping
from GF(2™) to GF(2™), with m|n , defined as

m 2m m(n/m=1)
Trn"(a) =a+a® +a*> +---4+a° ,

wherea € GF(2").

Recall that(by, b1, ba, b3, bs) were already determined as Any two Hadamard sequenceé) andb(:) of the same pe-
(115, 133, 133, 133, 133) or (133, 115, 133, 133, 133) andd N are said to be equivalent if one can find integéesds
(do, dy,ds,ds, ds) were also determined as (35, 17, 17, 17, 173uch that(i) = b(di+s) where(d, N) =1and0 < s < N—1.
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Otherwise, we say that they are inequivalent. There have beene M127-3:5(t) = Tr, " (af 4+ o + a3 4 2!t 4 o).
some effort to determine the number of inequivalent Hadamard

sequences of perio@™ — 1 for eachn, which implies the (255,127,63)-CHDS

classification of cyclic Hadamard difference sets (CHDS) with

v = 2™ — 1, since every CHDS witly = 2™ — 1 is equivalent
to a Hadamard sequence of per@dd — 1 by the well-known s
correspondence that, for eack= 0,1,2,--- ,2" — 2, a(i) =0 GF(27). 8

if and only ifi € D. In this section, all the Hadamard sequences™ M255 (M-sequence}(t) = T'ri"(a).

of period2™ — 1 forn = 3,4,---,10 are classified and listed O G255 (GMW-seguetnce) Et] 53t 91t
according to the known construction methods. s(t) =Tri"(a" + o™ +a”" +a™).

There are four (255,127,63)-CHDS [14]. Their trace rep-
resentations are as follows wheteis a primitive element of

0 Miscellaneous sequences [11]-[13]:
(7,3,1)-CHDS o M255-1:5(t) = Tri®(af + a''t + ot + 27 4 7).

- — 8¢t 3t 43t 91t 111¢
There is only one (7,3,1)-CHDS. It is equivalent to an * M255-2:5(t) = Tri"(a’ + o™ + o™ + a7 4+ ol 1),

sequence which can be expressed as
(511,255,127)-CHDS

There are five (511,255,127)-CHDS [15], [16]. Letbe a
primitive element ol F'(2%). Then the corresponding 5 binary
sequences can be written as follows.

O m511(m-sequenced(t) = Tr°(at).

(15,7,3)-CHDS O G511(GMW-sequence) [8]:

There is only one (15,7,3)-CHDS. It is an-sequence and its

trace representation is

s(t) = Tri®(at)

wherea is a primitive element off F'(2?).

s(t) = Trlg(ozt +allt 4 a43t)‘
O Miscellaneous sequences [11]-[13], [16]:
e M511-1:5(t) = Tr” (a* + ot + a31).
whereq is a primitive element off F'(2*). e M511-2:
s(t) :Tﬁg(at + Bt 4 BT
(31,15,7)-CHDS 1 aB3t 4 QI | 125t a1s3t)_

s(t) = Tri*(af)

There are two inequivalent (31,15,7)-CHDS. Since 31 is a o M511-3:

prime congruentto 3 mod 4, there must be a Legendre sequence '

of period 31. Letx be a primitive element af F'(2°). s(t) =Tr° (ol + ™ + a°™ + ™™
O m31(m-sequence}(t) = Tr.°(at).

83t 103t 111¢ 127t 183t
O L31(Legendre sequence) [H(t) = Tr° (! +a’ +a™). ta™ + o+ + o 4+ 0T,

(63,31,15)-CHDS (1023,511,255)-CHDS
There are two (63,31,15)-CHDS. Lete a primitive element  There are ten (1023,511,255)-CHDS [17], [18]. lkebe a
of GF(2°). primitive element of7 F'(219).
O m63(m-sequence)(t) = Tr5(at). O m1023(m-sequence)(t) = Tr, ' (at).
O G63(GMW-sequence) [8k(t) = Tr%(af + o). O GMW-sequences [8]:

o G1023-1:s(t) = Tr'%(

o G1023-2:s(t) = Try _

o G1023-3:s(t) = Tri'°(al + a'0lt 4 o159 4 o221t),
° ) (

[ ]

—
o

(127,63,31)-CHDS

There are six (127,63,31)-CHDS [9]. Their trace representa-
tions are as follows where is a primitive element of F/(27).

O m127(m-sequence}(t) = Tri" (at).

O L127(Legendre sequence) [7]: s(t) =Tr (' + o™ + '™ 4 o
+ a109t +a125t +a159t + O£187t).

(
G1023-4:s(t) = Try'%(al + o + 57 + o221t).
G1023-5:

S(t) :Tr17(at + a9t _l_allt + a13t
Faldt ol 4 o2t 4 Bl | ATh) O Miscellaneous sequences [11]-[13]:

e M1023-1:

O H127(Hall's sextic residue sequence) [10]:
( q )[ ] S(t) _ TT‘llo(Ozt _I_allt + alst + a39t + a127t).

_ Tt 19¢ 47t
s)=Tri ' (" +a +a"). . M1023.2-
O Miscellaneous sequ;ances [11]-[13]: s(t) =T (ot + o 4 al7t 4 o83

o M127-1:s(t) = Tri(a’ + o't + o). 109t 125t | 150t | 187t
o M127-2:5(t) = Tri" (af + &® + a™ + o 4 o2%). + o' 4 @'t 4 @l BT,
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(1]
[2]
(3]
[4]

(5]
(6]
(7]

(8]
9]

[10]

[11]

[12]

[13]
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o M1023-3: [14]

S(t) :TT‘llo(Oét + a41t + a47t 5]
+ a63t + a87t + a125t + Oé205t). [16]

e M1023-4: [17]
s(t) =T'r1'9(al + o + o + o194 o83 [18]

+ a71t + alllt + a121t + a253t

237t | 191¢ | 183t | 205t | 245t
+ o+ a7 4 a4 o + a0,
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