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Abstract—A k × n circular Florentine array is an array of n distinct symbols in k circular rows
such that

(1) each row contains every symbol exactly once, and
(2) for any pair of distinct symbols (a, b) and for any integer m from 1 to n− 1 there is at most

one row in which b occurs m steps to the right of a.

For each positive integer n = 2, 3, 4, . . . , define Fc(n) to be the maximum number such that an
Fc(n)× n circular Florentine array exists.

From the main construction of this paper for a set of mutually orthogonal Latin squares (MOLS)
having an additional property, and from the known results on the existence/nonexistence of such
MOLS obtained by others, it is now possible to reduce the gap between the upper and lower bounds
on Fc(n) for infinitely many additional values of n not previously covered. This is summarized in the
table for all odd n up to 81. c© 2000 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

It would always be better to begin by a few examples rather than a formal definition to describe
a combinatorial object called circular Florentine array . An example of a 4×5 circular Florentine
array is shown in Figure 1. Two other examples are shown in Figures 2 and 3, which are 4×15 and
4×27 circular Florentine arrays, respectively. Note that each row has every symbol 0, 1, . . . , n−1
exactly once. Observe further that for any symbol a and for any integer m = 1, 2, . . . , n− 1, the
symbols in m steps circularly to the right of a are all distinct throughout the array.

Figure 1. A 4× 5 circular Florentine array.

Part of this paper is based on the presentation in GF(60), Oxnard, CA, May 29–31, 1992 in celebration of
S. W. Golomb’s 60th birthday.
*Original manuscript was written based on the work done while the author was with Communication Sciences
Institute, University of Southern California, Los Angeles, CA 90089-2565, U.S.A.

0898-1221/00/$ - see front matter c© 2000 Elsevier Science Ltd. All rights reserved. Typeset by AMS-TEX
PII: S0898-1221(00)00104-8



32 H.-Y. Song

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 7 1 8 2 12 3 11 9 4 13 5 14 6 10

0 4 11 7 10 1 13 9 5 8 3 6 2 14 12

0 13 7 2 11 6 14 10 3 5 12 9 1 4 8

Figure 2. A 4× 15 circular Florentine array.

14 15 16 17 18 19 20 21 22 23 24 25 26 0 1 2 3 4 5 6 7 8 9 10 11 12 13

21 7 10 22 9 23 8 24 11 25 14 26 12 0 15 1 13 2 16 3 19 4 18 5 17 20 6

18 24 15 7 5 25 13 16 6 8 26 17 23 0 4 10 1 19 21 11 14 2 22 20 12 3 9

10 18 22 6 3 1 15 19 2 13 23 11 7 0 20 16 4 14 25 8 12 26 24 21 5 9 17

Figure 3. A 4× 27 circular Florentine array.

Formally, a k × n circular Florentine array is an array of n distinct symbols in k circular rows
such that each row contains every symbol exactly once and that for any pair of distinct symbols
(a, b) and for any integer m from 1 to n− 1 there is at most one row in which b occurs m steps
(circularly) to the right of a. For convenience, define Fc(n) for each positive integer n to be the
maximum number such that an Fc(n)× n circular Florentine array exists. The examples shown
in Figures 1–3 prove that Fc(5) ≥ 4, Fc(15) ≥ 4, and Fc(27) ≥ 4.

Proposition 1.1. p− 1 ≤ Fc(n) ≤ n− 1, for each n = 2, 3, 4, . . . , where p is the smallest prime

factor of n.

Proof. Let n ≥ 2 be a positive integer. For any fixed symbol a, since there are at most n − 1
ordered pairs of the form (a, x) where a 6= x, the number of circular Florentine rows that could
possibly exist is clearly at most n − 1. On the other hand, it is not hard to show that the top
p− 1 rows of the multiplication table mod n with borders in the natural order form a (p− 1)×n
circular Florentine array, where p is the smallest prime factor of n.

The exact value of Fc(n) and the related problems have been investigated by others [1–4] for
the direct application of Fc(n) rows of a circular Florentine array into communication signal
designs such as frequency hopping patterns, radar arrays, and sonar arrays. There are at least
two previous results concerning the value of Fc(n). These are

(1) Fc(n) = 1 whenever n is even [1], and
(2) Fc(n) ≤ n − 2 whenever “Bruck-Ryser Theorem” rules out the existence of a finite pro-

jective plane of order n [1,5–7].

In Section 2, we will prove the following necessary and sufficient condition for the existence of
a k×n circular Florentine array. The construction in the proof results in not only the above two
previous results, but also some refinement for the exact value of Fc(n) for infinitely many values
of n other than listed in (1) or (2) above.

Theorem 1.1. There exists a circular Florentine array of size k× n if and only if there exists a

set of k mutually orthogonal Latin squares of order n such that the rows of any square are cyclic

shifts of each other and that every square is obtainable from any other only by permuting the

rows.

Finally, all possible values of Fc(n) for 3 ≤ n ≤ 81, n odd, are shown in Table 1. This
summarizes our current state of knowledge on Fc(n) and is an updated table from [3].

2. PROOF BY CONSTRUCTION AND ITS IMPLICATION

Proof of Theorem 1.1. Suppose we are given a k×n circular Florentine array, which will be
denoted by C = (c(i, j)) in matrix notation where c(i, j) ∈ {a0, a1, . . . , an−1} for i = 1, 2, . . . , k
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Table 1. Possible values of Fc(n) for all odd n from 3 to 81.

n Fc(n) LB UB n Fc(n) LB UB

3 2 n is prime 43 42 n is prime

5 4 n is prime 45 2, . . . , 43 ∗ Corollary 2.3

7 6 n is prime 47 46 n is prime

9 2 search 49 6, . . . , 48 ∗ ?

11 10 n is prime 51 2, . . . , 48 ∗ Corollary 2.4

13 12 n is prime 53 52 n is prime

15 4 search 55 4, . . . , 54 ∗ ?

17 16 n is prime 57 7, . . . ,55 ‡ Corollary 2.1

19 18 n is prime 59 58 n is prime

21 5, . . . , 19 ‡ Corollary 2.1 61 60 n is prime

23 22 n is prime 63 6, . . . , 62 ‡ ?

25 4, . . . , 24 ∗ ? 65 4, . . . ,63 ∗ Corollary 2.3

27 4, . . . , 26 search ? 67 66 n is prime

29 28 n is prime 69 2, . . . , 66 ∗ Corollary 2.4

31 30 n is prime 71 70 n is prime

33 3, . . . , 30 † Corollary 2.4 73 72 n is prime

35 4, . . . , 33 ∗ Corollary 2.3 75 2, . . . , 73 ∗ Corollary 2.3

37 36 n is prime 77 6, . . . , 75 ∗ Corollary 2.1

39 3, . . . , 38 † ? 79 78 n is prime

41 40 n is prime 81 2, . . . , 80 ∗ ?

∗ Basic lower bound, one less than the smallest prime factor.

† Theorem 1.1 and [8].

‡ Theorem 1.1 and [9] (see Section 3 for †, ‡, and “search”).

? Basic upper bound, which is n− 1.

Cor. See Section 2 for Corollaries.

and j = 0, 1, 2, . . . , n − 1. Assume that the top row is in the natural order a0, a1, a2, . . . , an−1

(rename the symbols if necessary).
We will construct a set of k squares, L1, L2, . . . , Lk, of size n × n using only the cyclic shifts

of a0, a1, a2, . . . , an−1. Therefore, it is sufficient to specify the left-most column of each square
(column 0). Rows and columns of the square have labels 0, 1, 2, . . . , n−1. For each x = 1, 2, . . . , k,
consider the following relation:

for i = 0, 1, 2, . . . , n− 1, c(x, i) = aj =⇒ Lx(j, 0) = ai. (2.1)

First, note that the left-most column of Lx given by equation (2.1) is the inverse permutation
of those induced by the row x of C. Here, we use the interpretation of each row as a permutation
of symbols by the rule c(1, i)→ c(x, i) for i = 0, 1, 2, . . . , n− 1. Therefore, each column of Lx is
a permutation. Since each row is a cyclic shift of a0, a1, . . . , an−1, this proves that Lx is Latin.
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To show the orthogonality of Ls and Lt for some 1 ≤ s < t ≤ k, suppose, on the contrary, that
they are not orthogonal. Then, there are two corresponding positions in both the squares such
that the two ordered pairs from these positions are the same. That is, for some indices x, y, u,
and v,

Ls(x, y) = Ls(u, v) = ai and Lt(x, y) = Lt(u, v) = aj ,

for some symbol ai and aj . This implies

Ls(x, 0) = aiªy, Lt(x, 0) = ajªy, and

Ls(u, 0) = aiªv, Lt(u, 0) = ajªv,

where ª denotes mod n subtraction. This can happen only if

c(s, iª y) = ax = c(t, j ª y), and

c(s, iª v) = au = c(t, j ª v).

But, it implies that the symbol au is y ª v steps to the right of ax in both the row s and the
row t of C, a desired contradiction.

Similarly for the converse.

From the above theorem, the following two results can easily be derived.

Corollary 2.1. (See [1,5,6].) Fc(n) ≤ n− 2 whenever the Bruck-Ryser Theorem rules out the

existence of a finite projective plane of order n, or more specifically, whenever n ≡ 1 or 2 (mod 4)
such that the square-free part of n contains at least one prime factor p which is congruent to

3 mod 4.

Corollary 2.2. (See [1].) Fc(n) = 1 whenever n is even.

Proof. Note that any of the Latin squares given by the construction is essentially an addition
table of integers modn, and hence does not have a single transversal [10] if n is even.

Additional results on the nonexistence of an (n−1)×n circular Florentine array can be obtained
from the nonexistence of MOLS described in Theorem 1.1 by de Launey [11,12]. This can be
translated in our terminology as the following corollary.

Corollary 2.3. Fc(n) ≤ n − 2 whenever the existence of the set of n − 1 MOLS of order n

having the property described in Theorem 1.1 is ruled out, or more specifically, whenever m is a

quadratic nonresidue mod p where m 6≡ 0 (mod p) is an integer dividing the square-free part of n

and p 6= 2 is a prime divisor of n.

For example, for each positive integer t, if n = 5t ·7, then n ≡ 3 (mod 4) and 7 ≡ 2 (mod 5) is a
quadratic nonresidue modulo 5. Therefore, there does not exist an (n−1)×n circular Florentine
array whenever n = 5t · 7 for any positive integer t. These are infinitely many additional values
of n, not covered by the Bruck-Ryser Theorem (see Corollary 2.1).

Woodcock [13] in 1986 proved independently that the set of n − 1 MOLS of order n having
the property described in Theorem 1.1 does not exist whenever n ≡ 15 (mod 18). Though these
values of n are already ruled out by Corollary 2.3, the proof actually rules out the existence of
n− 2 such squares.

Corollary 2.4. Fc(n) ≤ n− 3 whenever n ≡ 15 (mod 18).

3. LOWER BOUND ON Fc(n) AND CONCLUSION

The basic lower bound which is one less than the smallest prime factor of n (Proposition 1.1)
can be improved by the constructions from Jungnickel [9] and Theorem 1.1. For n < 100, this
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gives Fc(21) ≥ 4, Fc(57) ≥ 7, and Fc(63) ≥ 6. Nazarok [14] found 5 MOLS of order 21 in which
every row of a square is a cyclic shift of its top row. This gives Fc(21) ≥ 5.

Schellenberg, van Rees, and Vanstone in 1978 have searched by computer for those MOLS
described in Theorem 1.1 [8]. From their explicit examples of 3 MOLS of order n = 33 and
n = 39, and from Theorem 1.1, we have Fc(33) ≥ 3 and Fc(39) ≥ 3.

It is believed that an (n − 1) × n circular Florentine array does not exist whenever n is not
a prime. When p is a prime, the multiplication table of the integers 1, 2, . . . , p − 1 mod p (by
adjoining a constant column of all 0s) provides an example of a (p−1)×p circular Florentine array.
Therefore, Fc(p) = p − 1 if p is a prime. In addition to the corollaries in the previous section,
two more cases were determined by some exhaustive computer search, which are Fc(9) ≤ 2, and
Fc(15) ≤ 4, the latter by Wilson and Roth [15].
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