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Trace Representation of Legendre Sequences
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Abstract. In this paper, a Legendre sequence of period p for any odd prime p is explicitely represented as a sum
of trace functions from G F(2n) to G F(2), where n is the order of 2 mod p.
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1. Introduction

Legendre sequence {b(t)} of period p is defined as [1,3,2]

b(t) =




1 if t ≡ 0 (mod p)

0 if t is a quadratic residue mod p

1 if t is a quadratic non-residue mod p

(1)

If p ≡ ±3 (mod 8), the corresponding Legendre sequence is not only balanced but also has
optimal autocorrelation property. Because of the usefulness of balanced binary sequences
with optimal autocorrelation in communication systems area, many researchers have studied
the properties of such sequences to which Legendre sequences belong. In [2], the linear
complexity of a Legendre sequence is determined, which was in fact already found in [6].
In [5], J.-S. No, et al. have found the trace representation of Legendre sequences of Mersenne
prime period. In this paper, we found a general trace representation of Lengendre sequences
of any prime period. For this, we consider two separate cases. The first case is when the
period p of a sequence is ±1 (mod 8) and the second case is when p ≡ ±3 (mod 8). For
a prime p ≡ ±1 (mod 8), the result in this paper is a straightforward generalization of the
result in [5].

For convenience, we use the following notation in this paper. G F(q) is the finite field of
q elements, p is an odd prime, n is the order of 2 mod p, and Z p is the integers mod p.
For integers i and j , we use (i, j) as the gcd of i and j . We use α, β, γ, . . . as elements of
G F(2n), and the trace function from G F(2n) to G F(2) is denoted by tr(x) instead of tr n

1(x)

for any x ∈ G F(2n) unless it is necessary to specify those subscripts and superscripts. It is
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defined as

tr(x) = x + x2 + x22 + · · · + x2n−1
.

One can easily check that tr(x) + tr(y) = tr(x + y) and tr(x) = tr(x2i
) for all i . Refer to

[4] for comprehensive treatment of trace functions.

2. Trace Representation of Legendre Sequences

Let p be an odd prime and n be the order of 2 mod p. Then it is easy to show that there
exists a primitive root u mod p such that u(p−1)/n ≡ 2 (mod p). In the remaining of this
paper, we use u as a primitive root mod p such that u(p−1)/n ≡ 2 (mod p).

Now, we consider the case where p ≡ ±1 (mod 8). In this case, note that 2 is a quadratic
residue mod p, and hence, x2 ≡ 2 (mod p) for some x , and 2(p−1)/2 ≡ (x2)(p−1)/2 ≡ x p−1

≡ 1 (mod p). Therefore, n divides (p − 1)/2. Furthermore, if i ≡ j (mod p−1
n ), then we

have tr(βui
) = tr(βu

p−1
n k+ j

) = tr(β2k u j
) = tr(βu j

) for any p-th root of unity β ∈ G F(2n).
All of these are summarized in the following:

LEMMA 1. Let p be a prime with p ≡ ±1 (mod 8) and 2 has order n mod p. Then, n divides
(p−1)/2. If i ≡ j (mod p−1

n ), then tr(βui
) = tr(βu j

) for any pth root of unity β ∈ G F(2n).

Following is the first part of our main result.

THEOREM 2. Let p be a prime with p ≡ ± 1 (mod 8), n be the order of 2 mod p, and u be
a primitive root mod p such that u

p−1
n ≡ 2 (mod p). Then, there exists a primitive pth root

of unity β in G F(2n) such that

p−1
2n −1∑
i=0

tr
(
βu2i ) = 0 (2)

and the following sequence {s(t)} for 0 ≤ t ≤ p − 1 is the Legendre sequence of period p:

s(t) =



∑ p−1
2n −1

i=0 tr
(
βu2i t

)
for p ≡ − 1 (mod 8),

1 + ∑ p−1
2n −1

i=0 tr
(
βu2i+1t

)
for p ≡ 1 (mod 8).

Proof. Let γ be a primitive pth root of unity in G F(2n) and consider the following:

p−1
2n −1∑
i=0

tr
(
γ u2i ) +

p−1
2n −1∑
i=0

tr
(
(γ u)u2i ) =

n−1∑
j=0




p−1
2n −1∑
i=0

(
γ u2i + γ u2i+1)

2 j

(3)

=
n−1∑
j=0




p−1
n −1∑
i=0

(
γ ui )

2 j
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=
n−1∑
j=0

p−1
n −1∑
i=0

(
γ ui+ p−1

n j
)

=
p−2∑
k=0

γ uk = 1. (4)

Since one of the two summands in the left-hand side of (3) is 0 and the other is 1, either
β = γ or β = γ u is the primitive pth root of unity satisfying (2).

Consider the case p ≡ −1 (mod 8). Since p−1
2 is odd, we have s(0) = p−1

2 · 1 = 1. If t
is a quadratic residue mod p, then

s(t) = s(u2 j ) =
p−1
2n −1∑
i=0

tr
(
βu2(i+ j))

.

Note that as i runs from 0 to p−1
2n − 1, both 2i and 2(i + j) for any j run through the same

set of values modulo p−1
n possibly in different order. By Lemma 1 and (2), therefore, we

have

s(u2 j ) =
p−1
2n −1∑
k=0

tr
(
βu2k ) = s(1) = 0.

Similarly for t a quadratic non-residue, we have

s(t) =
p−1
2n −1∑
k=0

tr
(
βu2k+1) = s(u).

Since β also satisfies the relation given from (3) up to (4), we have s(1) + s(u) = 1 and
consequently s(u) = 1, which proves that {s(t)} is the Legendre sequence of period p.

For p ≡ 1 (mod 8), similarly, it can be shown that {s(t)} is the Legendre sequence given
in (1).

Now, we will take care of the other case that p ≡ ± 3 (mod 8). We assume that p > 3 in
the remaining of this section in order to avoid certain triviality. We know that there exists a
primitive root u of G F(p) such that u(p−1)/n = 2. Since 2 is a quadratic non-residue mod p
where p ≡ ± 3 (mod 8), (p − 1)/n must be odd, which implies n is even. Therefore, we
can let 2n − 1 = 3pm for some positive integer m. Let α be a primitive element in G F(2n).
Then, α pm is a primitive 3rd root of unity, and we have

tr (α pm) =
n−1∑
i=0

(α pm)2i =
n/2−1∑

i=0

(α pm + α2pm)22i = n

2
· 1.

If p ≡ 3 (mod 8), then n/2 must be odd. On the other hand, if p ≡ −3 (mod 8), since
−1 is a quadratic residue, there exists some x such that x2 ≡ −1 ≡ 2n/2 (mod p). This
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implies that n/2 must be even. Therefore, we conclude that

tr(α pm) =
{

1 for p ≡ 3 (mod 8)

0 for p ≡ −3 (mod 8)
(5)

All of these are summarized in the following:

LEMMA 3. Let p > 3 be a prime with p ≡ ±3 (mod 8), let n be the order of 2 mod p,
and α be a primitive element of G F(2n). Then, tr(α pm) is given as (5).

Following is the second part of our main result.

THEOREM 4. Let p > 3 be a prime with p ≡ ±3 (mod 8), n be the order of 2 mod p, and
u be a primitive root mod p such that u

p−1
n ≡ 2 (mod p). Let 2n − 1 = 3pm for some m,

and β be a primitive pth root of unity in G F(2n). Then, there exists a primitive element α

in G F(2n) such that
p−1

n −1∑
i=0

tr
(
(α pm)2i

βui ) = 0, (6)

and the following sequence {s(t)} for 0 ≤ t ≤ p − 1 is the Legendre sequence of period p:

s(t) =



∑ p−1
n −1

i=0 tr
(
(α pm)2i (

βui )t)
for p ≡ 3 (mod 8),

1 + ∑ p−1
n −1

i=0 tr
(
(α2pm)2i (

βui )t)
for p ≡ −3 (mod 8).

Proof. If we let γ be a primitive element in G F(2n), one can easily check in a similar
manner in Theorem 2 that

p−1
n −1∑
i=0

tr
(
(γ pm)2i

βui ) +
p−1

n −1∑
i=0

tr
(
(γ 2pm)2i

βui ) = 1. (7)

Therefore, either α = γ or α = γ 2 is the primitive element satisfying (6). We would like
to note that for such α we have

p−1
n −1∑
i=0

tr
(
(α2pm)2i

βui ) = 1. (8)

Consider the case p ≡ 3 (mod 8). Since (p − 1)/n is odd in this case, by Lemma 3, we
have

s(0) =
p−1

n −1∑
i=0

tr(α pm) = tr(α pm) = 1.

From (6), (7), and (8), we also have s(1) = 0 and s(2) = 1.
Define Xi, j as

Xi, j � α pm2i
βui+2 j =

{
α pmβui+2 j

if i is even,

α2pmβui+2 j
if i is odd.
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If t is a quadratic residue mod p, then

s(t) = s(u2 j ) =
p−1

n −1∑
i=0

tr(Xi, j )

=



p−1
n −1∑
i=2

tr (Xi, j−1)


 + tr

(
X2

0, j−1

) + tr
(

X2
1, j−1

)

=
p−1

n −1∑
i=0

tr(Xi, j−1)

= s
(
u2( j−1)

)
.

Therefore, we have s(u2 j ) = s(1) = 0 for all j . Similarly, s(u2 j+1) = s(2) = 1 for all j .
Therefore, {s(t)} for 0 ≤ t ≤ p − 1 is the Legendre sequence given in (1). The other case
where p ≡ −3 (mod 8) can be proved similarly.

3. Concluding Remarks

The linear complexity and the characteristic polynomial of Legendre sequences were al-
ready determined in [2] and [6]. Nonetheless, we would like to note that the characteristic
polynomial and the linear complexity of Legendre sequences of period p can also be ob-
tained from the trace representations in the previous section as following:

Case Char. Polynomial Linear Complexity

p ≡ −1 (mod 8) Q(x) (p − 1)/2
p ≡ 11 (mod 8) (x + 1)N (x) (p + 1)/2
p ≡ 31 (mod 8) (x p + 1)/(x + 1) p − 1
p ≡ −31 (mod 8) x p + 1 p

Here, Q(x) = �i∈Q R(x + β i ) and N (x) = �i∈N R(x + β i ) where Q R and N R are the set
of quadratic residues and non-residues mod p, respectively, and β is a primitive p-th root
of unity satisfying (2).
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