Communication Signal Design Lab.

한국어

송홍엽 교수의 잡글

교재준비작업(1)

2004.10.03 21:27

송홍엽 조회 수:16933 추천:236

이산수학과 유한체이론 - 주별 강의주제 목록

1. Property of Z

    Z is a commutative ring with 1.
    it is an integral domain.
    it is a Euclidean domain.
    it is a Unique Factorization domain.
    Z/(n) is a ring, domain, ED, and UFD.
    G=U(Z/(n)) is a multiplicative group of order phi(n)
              it is cyclic if and only if n=1,2,4,p^k, 2p^k.
    Z/(n) is a field if and only if n=prime
             U(Z/(p)) is cyclic of order p-1

2. Computations over Z

    Linear equation over  Z/(n)
    Chinese Remainer Theorem
    Quadratic equation over Z/(n)
    Quadratic Reciprocity Theorem - Legendre/Jacobi symbols
    Payley construction of Hadamard matrix
    Big Integer arithematic
    Fast Exponentiation

3. Some Public Key Crypto Algorithms

    Primality testing algorithm
    DLP - analysis
    ElGamal Algorithm
    RSA Algorithm
    Secrete Sharing Algorithm
    Coin-flipping over Telephone
    Public key Envelope

4. Permutations and Counting

   Definition, notation, order, cycles
   unique decomposition
   even and odd permutation
   Not-Burnside Theorem on counting

5. Vectors and Matrix

   n-tuple vector space over F
   Basis, Linear Independance
   simultaneous equation and coefficient matrix
   Gauss Elimination,    rank of a matrix,    LU decomposition
   column space, row space, orthogonal complement
        rank, nullity, basic relation
   Vandemond matrix
  
6. Linear Transformation and Matrix

   Definition of Linear Transformation
   Range space and Null space, basic relation
   relation to Matrix
   Multi-linear transformation and Determinant
   Existence of Determinant

7. Some Problem Discussions

8. midterm

9. Polynomial over GF(p) = Fp[x]

    Fp[x] is a commutative ring with 1.
    it is an integral domain.
    it is a Euclidean domain.
    it is a Unique Factorization domain.
    Fp[x]/(f(x)) is a ring, domain, ED, and UFD.
    Fp[x]/(f(x))  is a field if and only if f(x) is irreducible

10. Structure of Finite Field

   Extension and Subfield
   Additive structure
   Multiplicative structure and conjugate class
   Addone table
   Homomorphism and isomorphism

11. Irreducible Polynomial over finite field

   irreducible polynomials over F2
   Property of minimal polynomials
   Conjugates
   Trace function
   m-sequence

12. Irreducible Polynomial and Cyclotomic Polynomial

   x^{q^n}-x = ㅠ V_d(x)
   Number of irreducible polynomials
   Cyclotomic Polynomials
        over C
        over Finite Field
   Some Factoring

13. Error-correcting linear codes

   binary symmetric channel, binary erasure channel
   binary linear code and minimum distance decoding
   Binary Hamming code and decoding
   minimum distance decoding is ML decoding
   BCH code over Z/(p)
   Some nonlinear simultaneous equations for decoding of BCH code over  Z/(p)

14. Cyclic code

   Hamming code and BCH code as cyclic code
   RS codes - encoding and decoding
   GFFT approach

15. Some Problem Discussions

16. final exam


  


번호 제목 글쓴이 날짜 조회 수
공지 논문에 영어작문 주의사항 몇 가지 송홍엽 2008.05.22 9404
공지 젊은 학부생 여러분에게... 송홍엽 2008.11.20 6367
공지 우리학과 대학원생 모두에게 (특히, 박사과정들에게) 하고싶은 말입니다. 송홍엽 2014.01.20 8420
69 [소고] 수학이란.... 송홍엽 2004.04.13 3492
68 오류정정부호에 대한 이야기 송홍엽 2004.04.13 5277
67 [교양상식] 메르센 소수--Mersenne Prime 송홍엽 2004.04.13 17654
66 [교양상식] 정수와 암호 송홍엽 2004.04.13 3710
65 [펌]Turbo code에 대한 글 송홍엽 2004.04.13 52742
64 SHANNON : CRACKING THE CHANNEL file 송홍엽 2004.04.13 20437
63 Re..Turbo code Encoder file 송홍엽 2004.04.13 4424
62 Re.. Turbo code Decoder file 송홍엽 2004.04.13 4318
61 2000년에 어딘가에 올린 글입니다.."열정" 송홍엽 2004.04.15 4710
60 퍼즐 2 송홍엽 2004.04.15 3670
59 퍼즐 3 송홍엽 2004.04.15 3869
58 퍼즐 4 송홍엽 2004.04.15 4093
57 퍼즐에 상금을 부여합니다...^^ 송홍엽 2004.04.15 4354
56 랜덤변수의 variance가 0이면? 송홍엽 2004.05.13 4704
55 marginally Gaussian but not jointly Gaussian 송홍엽 2004.05.13 4629
54 uncorrelated but not independent 송홍엽 2004.05.13 4773
53 combinatorial search problem file 송홍엽 2004.07.21 4590
52 아날로그 신호와 디지털 신호 송홍엽 2004.08.06 8549
51 정보화와 정보이론 송홍엽 2004.08.06 4699
» 교재준비작업(1) 송홍엽 2004.10.03 16933