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ABSTRACT

This paper proposes a new curved non-uniform schedule to improve the performance-complexity tradeoff of
sliding window decoding (SWD) in spatially-coupled low-density parity-check (SC-LDPC) codes. The existing
straight Pragmatic schedule reduces complexity compared to Uniform schedule, but also reduces BER
performance when the number of iterations is low. This paper designs two curved schedules using convex and
concave curves to flexibly adjust the balance between error correction performance and decoding complexity.
Simulations were conducted using two SC-LDPC code sizes (10000%5100 and 100000x51000) and various
window sizes (W=8, 10, 12). The results show that the convex curved non-uniform schedule maintains BER
performance while reducing complexity compared to Uniform schedule even with fewer iterations, whereas the
concave curved non-uniform schedule exhibits significant performance degradation but has the lowest

complexity.
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