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What is chaotic behavior?

• Chaotic behavior : aperiodic and highly unpredictable dynamics

• Chaotic maps are nonlinear functions that are extremely sensitive 

to initial values, where even small differences can produce 
completely different sequences.

• Applications: cryptography, digital watermarking, spread-

spectrum communication,  random number generation,…

e.g., Logistic maps

𝑥0 = 0.200
𝑥0 = 0.201
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Problems in Discrete Chaos

When implemented in digital systems, any (real field) chaotic
map will suffer from some serious dynamic degradation due
to finite-precision effects

… Cycle length𝑥(0) 𝑥(1) 𝑥(𝑙)

𝑥(𝑛)

…

Transient length

Typical orbit of discrete chaotic maps

𝑥(𝑙 + 1) 𝑥(𝑙 + 2)

𝑥(𝑛 − 1)

shorter periods, convergence to fixed 
values, and other problems from 
rounding-off and quantization
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Discrete Lyapunov Exponent 
of Discrete chaos

➢ Discrete Lyapunov Exponent (DLE) [10,11] 

quantifies the average rate of divergence between neighboring
elements of a permutation F in the discrete domain 

DLE 𝝀𝑭 of a permutation 𝑭 on the set 𝑺: 

𝜆F =
1

𝑀
෍

𝑖=1

𝑀

ln|𝑭 𝒛𝒊 − 𝑭(𝒛𝒊+𝟏)|

where 𝑧𝑖 = 𝑖 for 𝑖 ∈ 𝑺 and    𝑧𝑀+1 = 𝑀 − 1 [11]. 

[10] L. Kocarev and J. Szczepanski, “Finite-space Lyapunov exponents and 
pseudochaos,” Phys. Rev. Lett., vol. 93, p. 234101, 2004. 
[11] L. Kocarev, J. Szczepanski, J.M.Amigo, and I. Tomovski, “Discrete chaos-I: Theory,” 
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53,  no.6, pp.1300–1309, 2006.

𝑺 ≔ {1, 2, 3,… ,𝑀 − 1,𝑀}

neighbors
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Discrete Lyapunov Exponent 
of Discrete chaos

➢ Discrete Lyapunov Exponent (DLE) [10,11] 

A permutation 𝑭 is said to be discretely chaotic

if its DLE satisfies [10,11]

𝐥𝐢𝐦
𝑴→∞

𝝀𝑭 > 𝟎
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Permutation from the integer sequences of LFSRs

The resulting integer sequences
partition

the set {𝟏, 𝟐, … , 𝟐𝑳 − 𝟏} into disjoint cycles and
induce 

a permutation on the set {𝟏, 𝟐, . . . , 𝟐𝑳 − 𝟏}

Non-primitive but irreducible 
Connection Polynomial :
𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1

𝑥3𝑥2𝑥1𝑥0

𝑥4

𝑥0 𝑥1 𝑥2

𝑥3

Primitive Connection 
Polynomial :
𝑥3 + 𝑥2 + 1

Is this a discrete Chaos ?
Can we calculate its dLE ?
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Theorem 1

The discrete Lyapunov Exponent 𝜆𝐹 of 𝐹 satisfies the following:

𝐥𝐧 𝟑 ≤ 𝐥𝐢𝐦
𝑳→∞

𝝀𝑭 ≤ 𝐥𝐧 𝟐 ,

where 𝐹 is the induced integer permutation from an 𝑳-stage LFSR 

with irreducible connection polynomial and a non-zero initial state.

Satisfies the definition of  discrete chaos !

Main Theorem
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𝑭: 𝑺 → 𝑺

𝑧 𝐹(𝑧)

𝑺 ≔ 𝟏, 𝟐, . . . , 𝟐𝑳 − 𝟏

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

⋮

1 =
2 =
3 =

𝟐𝑳−𝟏 − 𝟏 =
𝟐𝑳−𝟏 =

𝟐𝑳 − 𝟏 =

⋮

⋮

𝑥0𝑥1𝑥2𝑥3 𝑥0𝑥1𝑥2𝑥3

irreducible      𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1

𝑥0 𝑥1 𝑥2 𝑥3

We will use this running example 
and prove the result in general

We divide 𝑆 ≔ 1, 2, . . . , 2𝐿 − 1 into three cases:

Case 1)  𝑧 ∈ 𝐷:= 𝑆 ∖ {2𝐿−1 − 1, 2𝐿−1, 2𝐿 − 1}

Case 2)  𝑧 = 2𝐿−1 − 1

Case 3)  𝑧 ∈ {2𝐿−1, 2𝐿 − 1}
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𝑭: 𝑺 → 𝑺

𝑺 ≔ 𝟏, 𝟐, . . . , 𝟐𝑳 − 𝟏

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

𝑧 𝐹(𝑧)

1 =
2 =
3 =

𝟐𝑳−𝟏 − 𝟏 =
𝟐𝑳−𝟏 =

𝟐𝑳 − 𝟏 =

⋮

⋮

Case 1)  𝐷:= 𝑆 ∖ {2𝐿−1 − 1, 2𝐿−1, 2𝐿 − 1}

Claim 1-(1) For all 𝒛 ∈ 𝑫

𝑭 𝒛 + 𝟏 − 𝑭 𝒛 ∈ 1, 2, 3 .

𝟐𝒛

or

𝟐𝒛 + 𝟏

Update rule:

Therefore,

𝑭 𝒛 + 𝟏 − 𝑭 𝒛 =

2 𝑧 + 1 − 2𝑧 = 2
2 𝑧 + 1 + 1 − 2𝑧 = 3
2 𝑧 + 1 − (2𝑧 + 1) = 1

2 𝑧 + 1 + 1 − (2𝑧 + 1) = 2

when the feedback is 0
𝑭 𝒛 = 𝟐𝒛
𝑭 𝒛 + 𝟏 = 𝟐(𝒛 + 𝟏)

when the feedback is 1
𝑭 𝒛 = 𝟐𝒛 + 𝟏
𝑭 𝒛 + 𝟏 = 𝟐 𝒛 + 𝟏 + 𝟏

𝑥0𝑥1𝑥2𝑥3 𝑥0𝑥1𝑥2𝑥3

𝜆F =
1

𝑀
෍

𝑖=1

𝑀

ln |𝑭 𝒛𝒊+𝟏 − 𝑭(𝒛𝒊)|Sketch of Proof
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𝑺 ≔ 𝟏, 𝟐, . . . , 𝟐𝑳 − 𝟏

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

𝑧 𝐹(𝑧)

1 =
2 =
3 =

2𝐿−1 − 1 =
2𝐿−1 =

2𝐿 − 1 =

⋮

⋮

𝑭: 𝑺 → 𝑺
Claim 1-(2) For all 𝒛 ∈ 𝑫

𝒛 ∈ 𝑫 𝑭 𝒛 + 𝟏 − 𝑭 𝒛 = 𝟑}

= 𝒛 ∈ 𝑫 𝑭 𝒛 + 𝟏 − 𝑭 𝒛 = 𝟏}

Case 1)  𝐷:= 𝑆 ∖ {2𝐿−1 − 1, 2𝐿−1, 2𝐿 − 1}

0 0 1 1
0 1 0 1    2
0 1 1 0    1
1 0 0 1    3
1 0 1 0    1
1 1 0 0    2
1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 0    2
0 1 1 1    3
1 0 0 0    1
1 0 1 1    3
1 1 0 1    2
1 1 1 0

𝑥0𝑥1𝑥2𝑥3 𝑥0𝑥1𝑥2𝑥3

For 𝑧 ∈ [1, 2𝐿−1 − 1],

• 𝐹 𝑧 + 1 − 𝐹 𝑧 = 𝟑 ⇔
𝐹 𝑧 + 2𝐿−1 + 1 − 𝐹 𝑧 + 2𝐿−1 = 𝟏

• 𝐹 𝑧 + 1 − 𝐹 𝑧 = 𝟏 ⇔
𝐹 𝑧 + 2𝐿−1 + 1 − 𝐹 𝑧 + 2𝐿−1 = 𝟑

𝜆F =
1

𝑀
෍

𝑖=1

𝑀

ln |𝑭 𝒛𝒊+𝟏 − 𝑭(𝒛𝒊)|Sketch of Proof

always 
contribute 

to the 
feedback

always not
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𝑭: 𝑺 → 𝑺

𝑺 ≔ 𝟏, 𝟐, . . . , 𝟐𝑳 − 𝟏

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

𝑧 𝐹(𝑧)

1 =
2 =
3 =

2𝐿−1 − 1 =
2𝐿−1 =

2𝐿 − 1 =

⋮

⋮

Case 2)  For 𝒛 = 𝟐𝑳−𝟏 − 𝟏, 

Claim 2: 𝑭 𝟐𝑳−𝟏 − 𝑭 𝟐𝑳−𝟏 − 𝟏 = 𝟐𝑳 − 𝟐

= 𝟐𝑳 − 𝟏
= 𝟏

𝑥0𝑥1𝑥2𝑥3 𝑥0𝑥1𝑥2𝑥3

𝜆F =
1

𝑀
෍

𝑖=1

𝑀

ln |𝑭 𝒛𝒊+𝟏 − 𝑭(𝒛𝒊)|Sketch of Proof

An irreducible polynomial has an odd
number of terms including 𝑥𝐿 and 𝑥0.

odd number of  terms
(except for the first and the last) 
contribute to the feedback 
FOR ANY IRRED. POLYNOMIAL

𝑥0 𝑥1 𝑥2 𝑥3
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𝑭: 𝑺 → 𝑺

𝑺 ≔ 𝟏, 𝟐, . . . , 𝟐𝑳 − 𝟏

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

𝑧 𝐹(𝑧)

1 =
2 =
3 =

2𝐿−1 − 1 =
𝟐𝑳−𝟏 =

𝟐𝑳 − 𝟏 =

⋮

⋮

Case 3) for 𝒛 = 𝟐𝑳−𝟏 or 𝒛 = 𝟐𝑳 − 𝟏.

Claim 3: Depending on whether the term
𝑥𝐿−1 appears or not in the polynomial, 
we have, 

𝑭 𝒛 + 𝟏 − 𝑭 𝒛 ∈ 𝟏, 𝟐 .

1 1 0 x
1 1 1 0

similarly

0 0 0 1
0 0 1 x  

when 𝑥𝐿−1 appears in the conn. poly.
0 0 1 x = 0 0 1 0 = 2
⇒ 𝑭 𝒛 + 𝟏 − 𝑭 𝒛 = 𝟏

when 𝑥𝐿−1 DOES NOT appear in the conn. poly.
0 0 1 x = 0 0 1 1 = 3
⇒ 𝑭 𝒛 + 𝟏 − 𝑭 𝒛 = 𝟐

= 1

𝑥0𝑥1𝑥2𝑥3 𝑥0𝑥1𝑥2𝑥3

𝜆F =
1

𝑀
෍

𝑖=1

𝑀

ln |𝑭 𝒛𝒊+𝟏 − 𝑭(𝒛𝒊)|Sketch of Proof
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As a summary, 

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

𝑧 𝐹(𝑧)

1 =
2 =
3 =

2𝐿−1 − 1 =
2𝐿−1 =

2𝐿 − 1 =

⋮

⋮

(claim 2)  2𝐿 − 2

(claim 3)  1 or 2

(claim 1) 
1 or 2 or 3

𝑥0𝑥1𝑥2𝑥3 𝑥0𝑥1𝑥2𝑥3

𝜆F =
1

𝑀
෍

𝑖=1

𝑀

ln |𝑭 𝒛𝒊+𝟏 − 𝑭(𝒛𝒊)|Sketch of Proof

𝒅𝒊𝒇𝒇

𝑧 ∈ 𝑆 𝒅𝒊𝒇𝒇 = 2 | = 𝛽 → 𝛽 ln 2

|{𝑧 ∈ 𝑆 | 𝒅𝒊𝒇𝒇 = 3}| = 𝛼 → 𝛼 ln 3

𝑧 ∈ 𝑆 𝒅𝒊𝒇𝒇 = 1 = 𝛼 + 𝟐 → 0

𝑧 ∈ 𝑆 𝒅𝒊𝒇𝒇 = 2𝐿 − 2 = 1 → 1 ln 2𝐿 − 2

2𝐿 − 1 𝜆F

when 𝑥𝐿−1 appears in the conn. poly.

when 𝑥𝐿−1 DOES NOT appear in the conn. poly.
similar calculation follows.
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𝜆F =
𝛼 ln3 + 𝛽 ln2 + ln(2𝐿 − 2)

2𝐿 − 1
=

ln 3𝛼2𝛽 + ln(2𝐿 − 2)

2𝐿 − 1

We use 𝟑 < 2 for lower bound and 3 < 𝟐𝟐 for upper bound:

ln 3𝛼𝟑𝜷/𝟐 + ln(2𝐿 − 2)

2𝐿 − 1
<
ln 3𝛼2𝛽 + ln(2𝐿 − 2)

2𝐿 − 1
<
ln 𝟐𝟐𝜶2𝛽 + ln(2𝐿 − 2)

2𝐿 − 1

Or

(𝟐𝜶 + 𝜷) 𝒍𝒏 𝟑 + ln(2𝐿 − 2)

𝟐𝑳 − 𝟏
< 𝜆𝐹 <

(𝟐𝜶 + 𝜷) 𝒍𝒏 𝟐 + ln(2𝐿 − 2)

𝟐𝑳 − 𝟏

We use finally   𝟐𝜶 + 𝜷 + 𝟑 = 𝟐𝑳 − 𝟏 and 𝑳 → ∞

𝒍𝒏 𝟑 ≤ 𝐥𝐢𝐦
𝑳→∞

𝝀𝑭 ≤ 𝒍𝒏 𝟐

𝜆F =
1

𝑀
෍

𝑖=1

𝑀

ln |𝑭 𝒛𝒊+𝟏 − 𝑭(𝒛𝒊)|Sketch of Proof
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lim
𝐿→∞

𝜆𝐹 = 𝒍𝒏( 𝟑)

lim
𝐿→∞

𝜆𝐹 = 𝒍𝒏(𝟐)

●

●

●
●

●
●

▲

▲

▲
▲

▲
▲

𝒍𝒏 𝟑 ≤ 𝐥𝐢𝐦
𝑳→∞

𝝀𝑭 ≤ 𝒍𝒏 𝟐
Theorem 1.

• Studied the chaotic nature of the integer sequences from
𝐿-stage irreducible LFSRs

• Derived the discrete Lyapunov Exponent of the integer

permutation and showed that it is lower bound by 𝟑 as
the register length 𝐿 increases indefinitely

Conclusion
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