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What is chaotic behavior?

Chaotic behavior : aperiodic and highly unpredictable dynamics

Chaotic maps are nonlinear functions that are extremely sensitive
to initial values, where even small differences can produce
completely different sequences.
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Applications: cryptography, digital watermarking, spread-
spectrum communication, random number generation,...
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Problems in Discrete Chaos

When implemented in digital systems, any (real field) chaotic
map will suffer from some serious dynamic degradation due

to finite-precision effects shorter periods, convergence to fixed
values, and other problems from

rounding-off and quantization

Transient length

Typical orbit of discrete chaotic maps
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Discrete Lyapunov Exponent
of Discrete chaos

» Discrete Lyapunov Exponent (DLE) [10,11]
qguantifies the average rate of divergence between neighboring
elements of a permutation F in the discrete domain

S:=1{1,2,3,...M—1,M}

LA 4+ L% ¢
neighbors
(" DLE Ar of a permutation F on the set S: A
1 M
Is =22 > In|F(z) = F(zi10)l
i=1
\ wherez; =ifori €S and zy,,=M-—-1 [11]. )

[10] L. Kocarev and J. Szczepanski, “Finite-space Lyapunov exponents and

pseudochaos,” Phys. Rev. Lett., vol. 93, p. 234101, 2004.
[11] L. Kocarey, J. Szczepanski, J.M.Amigo, and I. Tomovski, “Discrete chaos-I: Theory,”

IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no.6, pp.1300-1309, 2006.
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O .
Discrete Lyapunov Exponent
of Discrete chaos
» Discrete Lyapunov Exponent (DLE) [10,11]

A permutation F is said to be discretely chaotic

if its DLE satisfies [10,11]

M—-o0

[WSDA2025 6



Contents

» Main Contribution
* Chaotic behavior of integer sequences from LFSRs
 Main Theorem and Proof

[WSDA2025

-~




:&o Permutation from the integer sequences of LFSRs

X0 X1 Xy Xo X1 ) X3
<+ < < < <+ < < < <
\Am/ X3 \\A@// X4
€/
Primitive Connection Non-primitive but irreducible
Polynomial - Connection Polynomial :
x3+x%+1 xt+x3+x2+x+1
o9, (D
& > 9‘9
O¥®D,
(5) 2 @D,
® o‘o @‘0
OO NGO D)
The resulting integer sequences )
partition _ . ,
the set {1,2, ..., 2L — 1} into disjoint cyclesand | 'Sthisa dllscrlete Chaos i
induce Can we calculate its dLE
a permutation on the set {1,2,...,2/ — 1}
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Main Theorem

Theorem 1

The discrete Lyapunov Exponent 1 of F satisfies the following:
In(v3) < lim 4z < In(2),

where F is the induced integer permutation from an L-stage LFSR

with irreducible connection polynomial and a non-zero initial state.

$

Satisfies the definition of discrete chaos !
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o> DLE Ay of a permutation F on the set §:
:
1 o
AF=—ZI S=1{1,23,..,M—1,M}
Mi_l LAt L q 3

neighbors

wherez; =ifori €S and/ zy,, =M —1 [11].

s:={1,2,...,2L - 1}
F- S5 We will use this running example
and prove the result in general

Z F(Z) <—x0: x1: xZ: x3:
X0X1X2X3 X0X1X2X3
1=0001 00117
2=0010 0101:]
3:8?88 (1)(1)8)?:] irreducible  x* +x3 +x*+x+1
0101 1010 .
0110 1100: /WedivideS'— {1,2 2L — 1}intothreecase5'\
2l-1 _1=0111 1111 Tt '
2!71=1000 0001 Casel) z € Di=S\{2L71— 1,271 2L — 1)
1001 0010
1010 | 0100 Case2) z = 21 -1
1011 0111 o
1100 1000 KCaseB)zE{Z , 2¢—1} )
1101 1011
1110 1101
L _
2" vk l‘),&()lz;s” 1110 10



s:={1,2,...,2L - 1}
F: -85
F(z)
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Sketch of Proof s = ) In|F(zi.,) - F(z)
i=1

4 N\
Casel) D:=S\{2!"t1—1,2l71 2L — 1}
Claim 1-(1) Forallz € D
|F(z+ 1) — F(2)| € {1, 2, 3}.

. J
Update rule:
when the feedback is O when the feedback is 1
F(z) =2z F(z)=2z+1

Fz+1)=2(z+1)

Fz+1)=2(z+1)+1

Therefore,

IF(z+1) — F(2)| =

(12(z + 1) — 22| = 2
|2(z+ 1)+ 1) —2z| =3
2z+1)—(2z+1)| =1

CE+D+1D) - 2z+ 1] =2
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3
Sketch of Proof s = ) In|F(zi.,) - F(z)
i=1

4 )
Casel) D:=S\{2t71—1,2l71 2L — 1}

Claim 1-(2) Forallz € D

F: S-S
F(2) [{z € D| |F(z + 1) — F(2)| = 3}
VA VA
— S = {zeD||F(z+1) - F(2)| = 1}|
1= 1
2 = 1 2
3= 0 1 «—
always not g) (13 4:: For z € [1, 2L—1 _ 1]’
St = 0 ° c IFE+D-F@)] =3
L1 — IF(z+2'"1+ D) —-F(Ez+2EYH| =1
c Fz+1D-F@)|=1

always IF(Z + L1 + 1) — F(Z + ZL_l)l =3
contribute
to the

feedback

L_1=
2 IW]SI)A 025 12
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3
Sketch of Proof s = ) In|F(zi.,) - F(z)
i=1

4 )
Case2) Forz =2L-1_1,
s:={1,2,...,2L - 1}
F:5-S Claim2: |[F(2l71) - F(2l-1-1)| =2L -2
Z F(z) h g

X0X1X2X3 X0X1X2X3

1=0001 An irreducible polynomial has an odd

2=0010 number of terms including x’ and x°.

3=0011
0100 g b, f—x, — . ¢
0101 /
0110

271 —1=0111 —1111 =2L_1j
271 =1000—0001 =1
1001 odd number of terms
} 8 } ? (except for the first and the last)
1100 contribute to the feedback
1101 FOR ANY IRRED. POLYNOMIAL
1110
L_q=
2" wsbahobs | 13



3
Sketch of Proof s = ) In|F(zi.,) - F(z)
i=1

s:=1{1,2,...,2L- 1}

F: S-S
Z F(z)
Xg X1 X2 X3 Xg X1 X2 X3
1=0001
2=0010
3=0011
0100
0101
0110
271 —-1=0111
2l-1=1000—0001
1001—001x —— -
1010
1011
1100
1101
1110
2" ik Sabobs !

~

Case3) forz=2L"1or z=2L—-1.

Claim 3: Depending on whether the term
x~1 appears or not in the polynomial,
we have,

_ |F(z+ 1) — F(z)| € {1, 2}. )

~when xX~1 appears in the conn. poly.

001x=0010=2
=>|F(z+1)—F(z2)|=1

when x~1 DOES NOT appear in the conn. poly.
001x=0011=3
= |F(z+1)—-F(z)| =2

xj similarly
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3
Sketch of Proof s = ) In|F(zi..) — F(z)
i=1

As a summary,

[{z
[{z
z F(z) {z
XgX1Xp2X3 XgX1X2X3
1=0001 . Itz
2=0010 ]
3=0011 ] (claim 1)
0100 7 lor2or3
0101 ]
0110 ]
L-1 —
2 2_1_0111 1 (claim2) 2L -2
21-1= 1000 T o
100 1 . (claim3) 1or2
1010 3
1011 3
1100 3
1101 3
1110 3
L —_
2" iwhbabobs 1 l

T diff

€ S| diff =2}=p
€ S| diff =3} =a
€S| diff =1}=a + 2
€S| diff=2t-2}=1

when xX~1 appears in the conn. poly.

- [In2

- aln3

-0

- 11n(2F - 2)
(2F —-1) ¢

when x“~1 DOES NOT appear in the conn. poly.
similar calculation follows.



3
Sketch of Proof s = ) In|F(zi.,) - F(z)
i=1

aln3+ B In2 +In(2t —2)  In(3%2%) + In(2L - 2)
F = 2L —1 N 2L —1

We use V3 < 2 for lower bound and 3 < 2% for upper bound:

In(3938/2) + In(2L — 2) - In(392F) + In(2t - 2) In(22%2F) + In(2L - 2)

<
2L —1 2L -1 2L —1

Or

(2a + B) In(v3) + In(2L - 2) 2a + B) In(2) + In(2L — 2)
2L —1 <Ar < 2L —1

We use finally 2a+B+3=2-1 andL > o

In(vV3) < lim 2, < In(2)

[WSDA2025
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Theorem 1.
{ In(V3) < lim 2z < In(2)

Jim 4y = In(2)

® Ltz +1 —
08 @ A zhizilyl > lim 2z = In(V3)
#  Other irreducible polys
075 | e In(2)
% o - - -In(v3)
ALE 0.7 -*j.xx*:*g* In(2)
I * % ¥
I S R * % #* B
0.65 % oy . * .
* . X
06 A % * . ¥ * ¥ F % T *
i { * ¥ * * * %
055k == === === == = A_ X s o e e -+ - In(V3)

Conclusion

e Studied the chaotic nature of the integer sequences from
L-stage irreducible LFSRs

* Derived the discrete Lyapunov Exponent of the integer

permutation and showed that it is lower bound by v/3 as
wenAothe register length L increases indefinitely 17




