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Abstract—In this brief, we investigate the chaotic character-
istics of the integer sequences generated by primitive linear
feedback shift registers (LFSRs) by interpreting the internal
states as integers. We prove that the discrete Lyapunov exponent
(dLE) of the permutations induced by these sequences from an
L-stage primitive LFSR approches to the range between ln(

√
3)

and ln(2) as L increases indefinitely and hence the dynamic
systems satisfy the definition of discrete chaos. Furthermore, the
0-1 test of the sequences yields statistics close to 1, supporting the
conclusion that these sequences exhibit chaotic dynamics under
both theoretical and empirical evaluations.

Index Terms—Discrete chaos, chaotic behaviors, discrete
Lyapunov exponent, 0-1 test, linear feedback shift registers.

I. INTRODUCTION

CHAOS, characterized by its aperiodic and unpredictable
dynamics, has been widely adopted as a powerful tool

for modeling nonlinear and complex systems. In particular,
chaotic systems have found extensive applications in cryptog-
raphy [1], [2], [3], digital watermarking [4], spread-spectrum
communication [5], and random number generation [2], [3].

Traditional chaotic maps such as the Logistic, Tent,
Sine, and Hénon maps are typically defined over the real
field. However, when these continuous chaotic systems
are implemented in digital environments, finite-precision
arithmetic inevitably introduces rounding and quantization
errors [6], [7], [8]. Such errors accumulate systemati-
cally depending on the system state. As a result, key
chaotic properties–such as aperiodicity, unpredictability, and
complexity–are significantly degraded. Moreover, the internal
structure of chaotic maps realized in digital hardware often
remains unclear, and rare but important behaviors may be
overlooked due to the limited scope of empirical testing [7].
Accordingly, two main research directions have emerged:
the first is analyzing the dynamic behaviors of traditional
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chaotic maps under finite-precision arithmetic and the second
is exploring the need for chaotic systems defined directly over
discrete spaces [1], [7], [9], [10], [11], [12].

The first direction highlights that digital implementations
of continuous chaotic systems inevitably exhibit periodic
trajectories due to limited state space, leading to a collapse
of their original chaotic properties–a phenomenon referred to
as dynamical degradation. In particular, [1], [7], [10] analyzed
the dynamic behaviors that arise when well-known chaotic
maps such as the Logistic, Tent, and Hénon maps are imple-
mented with fixed or floating-point precision.

Meanwhile, a parallel line of research has sought to rig-
orously define chaos over discrete spaces as mentioned in
the second direction above [9], [11], [12]. For example, [9]
showed that semi-digital chaotic systems – continuous maps
subjected to quantization – can still satisfy Devaney’s defi-
nition of chaos under certain conditions. As a fundamental
approach, [11], [12] proposed the discrete Lyapunov expo-
nent (dLE) as a discrete analog of the traditional Lyapunov
exponent, suitable for characterizing the average divergence
of neighboring points in discrete dynamical systems. Here,
neighboring points refer to the elements that are adjacent to
a given element in the discrete domain, based on the natural
ordering of the discrete space defined by the system [11], [12].
They defined discrete chaos as the regime in which dLE
remains positive as the size of the discrete space tends to
infinity. Moreover, they emphasized that some bijective maps,
by eliminating stable periodic orbits, facilitate the emergence
of chaotic behavior in discrete systems.

Building on these foundations, numerous studies have
focused on proposing new chaotic maps defined over discrete
spaces and analyzing their dynamical behavior. These studies
primarily evaluate whether the proposed maps exhibit chaotic
properties using the dLE [8], [13], [14], [15], [16]. For
example, [8] proposed a discrete Arnold’s cat map over
the integer ring to generate integer pseudo-random number
generator (PRNG), and [13] presented a PRNG based on
a modified logistic map. Other discrete chaotic maps have
been proposed based on finite fields [14], based on reversible
modular operations [15] and based on permutation compo-
sitions [16]. These works demonstrate that discrete chaotic
systems can maintain high complexity and unpredictability in
practical environments for cryptography as well as PRNG.

Another widely used tool for evaluating chaotic behavior
is the 0-1 test [17]. The 0-1 test is known as a method that
distinguishes between chaos and regularity in deterministic
time series without requiring phase space reconstruction or any
preprocessing [17]. This method has been effectively applied
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not only to continuous systems [18], [19], [20], [21], but also
to discrete systems [22], and has been adopted in various
studies.

In this brief, we are interested only in an L-stage linear
feedback shift register (LFSR) with a primitive connection
logic, which corresponds to a primitive polynomial of degree
L over the binary field [23], [24], [25]. We call this an L-stage
primitive LFSR. When it is initialized with any non-zero L-
bit pattern, it generates a maximal-length sequence known as
an m-sequence, with period 2L − 1. Due to their long periods
and well-known pseudo-random properties–such as balance,
span, run, constant-on-the-coset, ideal autocorrelation, and
cycle-and-add properties [23], [24], [25]–m-sequences have
been widely used in pseudo-random number generation and
communication systems. We follow the convention illustrated
in Fig. 1, where the LFSR performs a left shift at each
clock cycle, and the connection logic defined by the given
primitive polynomial determines a feedback bit as a linear
combination of selected register bits, which is then inserted
into the rightmost position. A key property of the resulting
m-sequence is the span property, which ensures that every
consecutive L-bit window in the sequence shows an L-bit
pattern exactly once. This implies that the LFSR visits each
of the 2L − 1 non-zero states exactly once, and hence, the
m-sequence is sometimes regarded as a modified de Bruijn
sequence [23], [24], [25].

Motivated by the question whether any chaotic behavior
could arise in an L-stage primitive LFSR (due to well-known
pseudo-random properties of m-sequences), we regard the
internal states as integers and analyze the resulting integer
sequences from a dynamical systems perspective. Each L-bit
internal state corresponds to a window in the m-sequence and
it is treated as an integer value, as illustrated in Fig. 1. This
interpretation produces an integer sequence that captures the
global evolution of the system.

We theoretically derive the dLE of the resulting integer
sequences and show that it converges to a positive value
as L increases, thereby satisfying the definition of discrete
chaos [11], [12]. In addition, we verify the chaotic behavior
of the sequence using the 0-1 test. In particular, the trajec-
tory in the (pc, qc) plane demonstrates Brownian motion-like
characteristics. Furthermore, the resulting correlation statistic
K remains consistently close to 1, providing further empirical
evidence of the discrete chaos.

The remainder of this brief is organized as follows.
Section II provides a theoretical analysis of the dLE of
the integer sequences derived from L-stage primitive LFSRs.
Section III applies the 0-1 test to empirically evaluate their
chaotic behavior. Finally, Section IV concludes the paper.

II. DISCRETE LYAPUNOV EXPONENT

Since we interpret each L-bit register state of the L-stage
primitive LFSR as an integer, the resulting sequence traverses
all non-zero L-bit integers {1, 2, . . . , 2L − 1} exactly once.
Therefore, it can be viewed as a permutation. This perspec-
tive allows us to investigate its dynamical behavior using
permutation-based complexity measure. In this section, we
evaluate its chaotic behavior by computing the dLE [11], [12],
which quantifies the average divergence rate of divergence
between neighboring elements.

Fig. 1. Three-stage primitive LFSR and its state transition diagram with
non-zero initial condition.

To clarify the notion of neighborhood in a discrete ordered
set, consider the set of positive integers M := {1, 2, . . . , M}.
Here, the neighbors of i ∈ M are i − 1 and i + 1 for i =
2, 3, . . . , M − 1. It is to be noted that 1 ∈ M has only one
neighbor 2, and M ∈ M also has only one neighbor M − 1.
Then, the dLE λ� of a permutation � on the set of positive
integers M is defined as follows [11], [12]:

λ� = 1

M

M∑

i=1

ln d
[
�(zi), �(zi+1)

]
, (1)

where d[x, y] = |x−y| and zi = i for i ∈ M and zM+1 = M−1
as in [12].

A permutation � is said to be discretely chaotic if its dLE
satisfies limM→∞ λ� > 0, indicating persistent divergence in
the transformed domain as M increases indefinitely [11], [12].

Theorem 1: Consider an L-stage primitive LFSR with a
non-zero initial condition. The state transition of this LFSR
as integers produces a sequence of integers in the set of
2L − 1 positive integers {1, 2, . . . , 2L − 1}, which induces a
permutation F on the same set. Then, the dLE λF of the
permutation F satisfies the following:

ln
(√

3
)

≤ lim
L→∞ λF ≤ ln(2). (2)

Proof: We begin by examining the local distances d[F(z +
1), F(z)] for z ∈ S := {1, 2, . . . , 2L − 1}. We claim the
following three items:

1) Let D := S \ {2L−1 −1, 2L−1, 2L −1}. For all z ∈ D, the
local distance d[F(z + 1), F(z)] ∈ {1, 2, 3}. Moreover,

|{z ∈ D | d[F(z + 1), F(z)] = 3}|
= |{z ∈ D | d[F(z + 1), F(z)] = 1}|. (3)

2) For z = 2L−1 −1, we have F(z) = 2L −1 and F(z+1) =
1, so that d[F(z + 1), F(z)] = 2L − 2.

3) For z = 2L−1, we have d[F(z + 1), F(z)] ∈ {1, 2}. For
z = 2L − 1, we have d[F(z + 1), F(z)] = d[F(z), F(z +
1)] = d[F(z), F(z − 1)] ∈ {1, 2}.

To prove the first claim, we examine the update rule of
the left-shifting L-stage primitive LFSR with a feedback bit
determined by the connection logic. When each L-bit state is
interpreted as an integer z, the update rule defines the map F
as follows:

Authorized licensed use limited to: Yonsei Univ. Downloaded on August 30,2025 at 01:23:59 UTC from IEEE Xplore.  Restrictions apply. 



1270 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 72, NO. 9, SEPTEMBER 2025

Fig. 2. Binary representation of z ∈ S = {1, 2, . . . , 2L − 1}.

F(z) ≡ 2z mod 2L when the feedback is 0

F(z) ≡ 2z + 1 mod 2L when the feedback is 1.

Similarly, we see that F(z + 1) also takes the form 2(z +
1) or 2(z + 1) + 1 modulo 2L depending on the feedback.
Therefore, the difference d[F(z + 1), F(z)] must fall into one
of the following four cases:

(i) |2z − 2(z + 1)| = 2,
(ii) |2z − (2(z + 1) + 1)| = 3,

(iii) |(2z + 1) − 2(z + 1)| = 1,
(iv) |(2z + 1) − (2(z + 1) + 1)| = 2.

Therefore, for all z ∈ D, the local distance d[F(z+1), F(z)] ∈
{1, 2, 3}. Here, we note that 2(z + 1) or 2(z + 1) + 1 is more
than 2L if and only if 2z or 2z + 1 is more than 2L, and
hence, the modular reduction can be ignored in the difference
F(z + 1) − F(z).

Now, we observe the binary representation of z ∈ S =
{1, 2, . . . , 2L − 1} as shown in Fig. 2. For z ∈ [1, 2L−1 − 1],
the lower L − 1 bits of z and z + 2L−1 are the same, while the
most significant bits (MSBs) of them are different. Since the
MSB corresponds to the x0 term in the connection polynomial,
which always contributes to the feedback bit, it follows that
for all z ∈ D, F(z) and F(z + 2L−1) differ only in the least
significant bit (LSB). Consequently, if d[F(z + 1), F(z)] = 3,
then d[F(z+2L−1 +1), F(z+2L−1)] = 1, and vice versa. This
one-to-one correspondence implies (3).

To prove the second claim, we analyze the local distance
for z = 2L−1 −1. A primitive polynomial over the binary field
always has an odd number of nonzero terms, and the feedback
bit is computed by XORing the register bits corresponding
to the nonzero coefficients, excluding the highest-degree term
xL. The binary representation of 2L−1 − 1 has a 0 in the
MSB (which always contributes to the feedback) and 1s in the
remaining L − 1 positions. Since the number of contributing
terms excluding xL is even, the feedback bit is given by the
XOR of the MSB (which is 0) and an odd number of 1s among
the remaining bits. Thus, the feedback bit becomes 1, and we
obtain F(2L−1 − 1) = 2L − 1.

In contrast, the binary representation of the next value
z + 1 = 2L−1 has a 1 in the MSB and 0s elsewhere,
clearly yielding F(2L−1) = 1. Therefore, the local distance is
d[F(2L−1), F(2L−1 − 1)] = 2L − 2.

Next, we consider the third case with z = 2L−1. As
previously determined, F(2L−1) = 1. The binary representa-
tion of the next value, z + 1 = 2L−1 + 1, has 1s in both the
MSB and LSB. The LSB corresponds to the xL−1 term and
contributes to the feedback only if the coefficient of xL−1 in
the connection polynomial is 1. If so, the feedback bit becomes
0 and F(2L−1 + 1) = 2; otherwise, the feedback bit is 1 and

F(2L−1 + 1) = 3. Therefore, the d[F(2L−1 + 1), F(2L−1)] = 1
if the coefficient of xL−1 is 1, and d[F(2L−1+1), F(2L−1)] = 2
otherwise.

The case for z = 2L−1 can be analyzed in a similar manner.
By the same logic, d[F(2L − 2), F(2L − 1)] becomes 1 if the
coefficient of xL−1 is 1, and 2 otherwise.

As a summary, we classify the values d[F(z + 1), F(z)] for
z ∈ S = {1, 2, . . . , 2L−1} according to whether the coefficient
of xL−1 is 1 or 0.

• For the case where the coefficient of xL−1 is 1, let

α1 = |{z ∈ S | d[F(z + 1), F(z)] = 3}|,
β1 = |{z ∈ S | d[F(z + 1), F(z)] = 2}|.

Then,

|{z ∈ S | d[F(z + 1), F(z)] = 1}| = α1 + 2.

Since there is one instance of d[F(z+1), F(z)] = 2L −2,
we have

2α1 + β1 + 3 = 2L − 1.

• For the case where the coefficient of xL−1 is 0, let

α0 = |{z ∈ S | d[F(z + 1), F(z)] = 3}|,
β0 = |{z ∈ S | d[F(z + 1), F(z)] = 2}|.

Then,

|{z ∈ S | d[F(z + 1), F(z)] = 1}| = α0.

Since there is also one instance of d[F(z + 1), F(z)] =
2L − 2, we have

2α0 + β0 + 1 = 2L − 1.

Finally, the dLE λF can be expressed as:

λF = α ln 3 + β ln 2 + ln
(
2L − 2

)

2L − 1

= ln
(
3α2β

) + ln
(
2L − 2

)

2L − 1
,

where α = α1, β = β1 when the coefficient of xL−1 is 1, and
α = α0, β = β0 when the coefficient is 0. Since

√
3 < 2 and

3 < 22, we can express λF as follows:

ln
(√

3
2α+β

)
+ ln

(
2L − 2

)

2L − 1
< λF <

ln
(
22α+β

) + ln
(
2L − 2

)

2L − 1

Since 2α + β = 2α1 + β1 = 2L − 4 or 2α + β = 2α0 + β0 =
2L − 2, as L → ∞ we have the inequality (2).

Therefore, the dLE of F is guaranteed to be asymptotically
positive as L increases. This ensures that the integer sequence
generated by an L-stage primitive LFSR inherently possesses
the fundamental property of discrete chaos, namely, asymp-
totic divergence in the discrete phase space [11], [12].

An m-sequence can also be generated using the reciprocal
of a given primitive polynomial [23], [24], [25]. This imple-
mentation produces the m-sequence in reverse order compared
to the one generated by the original polynomial. However, this
symmetry does not carry over to the corresponding integer
sequences. Since the integer value depends on each L-bit state,
reversing the state transition results in different permutation.
This implies that the integer sequence is not simply the
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Fig. 3. Discrete Lyapunov exponents of the integer sequences generated
by L-stage primitive LFSRs for L = 4, 6, 7, 15, 22, using various primitive
polynomials.

reversed version of the original, but rather a distinct permuta-
tion determined by the choice of the connection polynomial.

The dLE λF of the integer sequence derived from an L-
stage primitive LFSR depends on the choice of the primitive
polynomial used in the LFSR. Specifically, if the primitive
polynomial used in the LFSR is of the form xL + xL−1 +
1, then limL→∞ λF = ln(

√
3). On the other hand, if it is

of the form xL + x + 1, then limL→∞ λF = ln(2). These
two polynomials are reciprocal to each other and generate
reversed m-sequences. However, the permutations defined by
the corresponding integer sequences are different and thus
yield different dLE values.

Figure 3 shows the dLEs of the permutations defined by
the integer sequences from L-stage primitive LFSRs with
L = 4, 6, 7, 15, 22, using various primitive polynomials. These
values of L are specifically chosen because both xL + x + 1
and xL + xL−1 + 1 are known to be primitive polynomials.
As discussed above, the dLEs obtained from xL + x + 1 and
xL+xL−1+1 approach from above the upper and lower bounds
in (2), respectively, as L increases indefinitely. In contrast,
the dLEs from other primitive polynomials approach some
values in the range given in (2). Notably, we would like to
concentrate on the dLEs for L = 15 and 22. The dLE values
from xL + x + 1 for L = 15 and 22 are the same as ln(2)

within 3 and 4 decimal digits, respectively, from above. Also,
those from xL + xL−1 + 1 for these L are the same as ln(

√
3)

within 3 and 4 decimal digits, similarly. From Theorem 1 and
some experimental results, we may say that dLE values for
any finite L (at least 15) must be in the range between ln(

√
3)

and ln(2) + ε for some small value of ε. Therefore, we may
conclude that dLE > ln(

√
3) for any finite L.

III. THE 0-1 TEST

To further verify the chaotic nature of the integer sequences
derived from L-stage primitive LFSRs, we apply the 0-1 test, a
widely used tool for detecting chaos in deterministic systems.
This test directly evaluates a discrete dynamic system using
only the time series, without requiring any preprocessing or
transformation [17].

Given a time series {xi}, i = 1, 2, . . . , N, the test constructs
a two-dimensional system (pc(n), qc(n)) as follows:

pc(n) =
n∑

i=1

xi cos(ic), qc(n) =
n∑

i=1

xi sin(ic),

where c ∈ (0, π) is a constant and n = 1, 2, . . . , N.

Fig. 4. Comparison of the 0-1 test results for the sequences generated by
the Logistic map, Tent map, and L-stage primitive LFSRs (L=16 and L=32).

The mean square displacement Mc(n) is defined as follows
with the condition n 	 N. In practice, a choice n ≤ N/10 is
recommended [17]:

Mc(n) = 1

N − n

N−n∑

i=1

[
(pc(i + n) − pc(i))

2

+ (qc(i + n) − qc(i))
2
]
.

If the system is chaotic, Mc(n) increases linearly with n;
otherwise, it remains bounded [17]. To quantify the growth
rate, the test computes the correlation coefficient Kc between
the sequences Mc(n) and n. Let ξ = (1, 2, . . . , n), 	 =
(Mc(1), Mc(2), . . . , Mc(n)). Then, the correlation coefficient
is defined as

Kc = corr(ξ,	) = cov(ξ,	)√
var(ξ)var(	)

,

where cov(·, ·) and var(·) denote covariance and variance,
respectively.

To ensure robustness against the choice of c, the test
evaluates Kc for multiple values of c sampled from (0, π).
In practice, selecting 100 distinct values of c is considered
sufficient to obtain a reliable estimate [17]. The final test
statistic is defined as K = median(Kc). A value of K close to
1 indicates chaotic dynamics, while a value close to 0 suggests
regular behavior [17].

Based on this framework, we apply the 0-1 test to the
integer sequences generated by L-stage primitive LFSRs and
evaluate their dynamical behavior in terms of the correla-
tion statistic K and the trajectory pattern in the (pc, qc)

plane.
Figure 4 shows the results of the 0-1 test applied to the

integer sequences generated by L-stage primitive LFSR with
L = 16 and 32, compared with time series produced by
the logistic and tent maps under control parameters known
to exhibit chaotic behavior. The control parameter μ of the
logistic map is known to induce chaotic behavior when 3.57 <

μ ≤ 4[13], while the tent map exhibits chaos when the control
parameter α lies in the range 0.5 < α < 1[19]. Based on these
known conditions, we select μ = 3.7 for the logistic map and
α = 0.7 for the tent map. For each system, a sequence of
length 5000 is generated. In the case of the L-stage primitive
LFSR, we use x16 + x12 + x3 + x + 1 for L = 16 and x32 +
x22 + x2 + x + 1 for L = 32 as the connection polynomials.
The parameter c is uniformly sampled from [π/5, 4π/5] with
1000 points, and Kc is computed for each c.

As shown in Fig. 4, the integer sequences generated by
L-stage primitive LFSRs exhibits stable and high Kc values
across all c, comparable to the chaotic maps. The median value
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Fig. 5. Trajectories in the (pc, qc) plane for integer sequences generated by
L-stage primitive LFSRs with L = 16 (left) and L = 32 (right).

of Kc, denoted by K, is 0.99813 for L = 16 and 0.99799 for
L = 32, confirming that the integer sequences generated by
L-stage primitive LFSRs can be regarded as chaotic.

Figure 5 shows the trajectories in the (pc, qc) plane for the
integer sequences generated by L-stage primitive LFSRs with
L = 16 and 32. The same primitive polynomials used in
Fig. 4 are employed. In the 0-1 test, chaotic dynamics are indi-
cated by unbounded and irregular trajectories in the (pc, qc)

plane without a clear closed structure–resembling Brownian
motion [17], [18]. This contrasts with regular dynamics, where
trajectories are typically bounded and form repetitive or sym-
metric patterns. As shown in Fig. 5, both trajectories display
this Brownian motion-like behavior: they are unbounded,
irregular, and lack any closed structure. These results consis-
tently suggest that the integer sequences generated by L-stage
primitive LFSRs can be regarded as chaotic under the 0-1 test,
even for finite L.

IV. CONCLUSION

This brief has investigated the chaotic nature of integer
sequences derived from L-stage primitive LFSRs by interpret-
ing the internal register states as integers. Although LFSRs
are inherently deterministic and linear, the resulting integer
sequences exhibit discrete chaotic behavior when viewed as
permutations over the set of non-zero L-bit integers.

We analytically derived the discrete Lyapunov exponent
of the induced permutation and showed that it converges
to a positive value as the register length L increases. This
satisfies the definition of discrete chaos and confirms that the
integer sequences have an asymptotically positive spreading
rate. In addition, the 0-1 test demonstrated high K values and
Brownian motion-like behavior in the (pc, qc) plane, further
validating the chaotic dynamics of the sequences.
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