
Academic Editor: Patrick Solé

Received: 10 December 2025

Revised: 5 January 2026

Accepted: 12 January 2026

Published: 22 January 2026

Copyright: © 2026 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license.

Article

Some New Maximally Chaotic Discrete Maps
Hyojeong Choi 1 , Gangsan Kim 1 , Hong-Yeop Song 1,* , Sangung Shin 2 , Chulho Lee 2 and Hongjun Noh 2

1 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea;
hjchoi3022@yonsei.ac.kr (H.C.); gs.kim@yonsei.ac.kr (G.K.)

2 Department of C4I R&D Center, LIG Nex1, 333 Pangyo-ro, Bundang-gu, Seongnam-si 13488,
Republic of Korea; sangung.shin@lignex1.com (S.S.); chulho.lee2@lignex1.com (C.L.);
hongjun.noh@lignex1.com (H.N.)

* Correspondence: hysong@yonsei.ac.kr

Abstract

In this paper, we first prove (Theorem 1) that any two inputs producing the same output in
a symmetric pair of discrete skew tent maps always have the same parity, meaning that they
are either both even or both odd. Building on this property, we then propose (Definition 1)
a new discrete chaotic map and prove that (Theorem 2) the proposed map is a bijection for
all control parameters. We further prove that (Theorem 3) the discrete Lyapunov exponent
(dLE) of the proposed map is not only positive but also approaches the maximum value
among all permutation maps over the integers {0, 1, . . . , 2m − 1} as m gets larger. In other
words, (Corollary 1) the proposed map asymptotically achieves the highest possible chaotic
divergence among the permutation maps over the integers {0, 1, . . . , 2m − 1}. To provide
some further evidence that the proposed map is highly chaotic, we present at the end some
results from the numerical experiments. We calculate the approximation and permutation
entropy of the output integer sequences. We also show the NIST SP800-22 tests results and
correlation properties of some derived binary sequences.

Keywords: chaotic map; finite precision; discrete chaos; skew tent map; discrete Lyapunov
exponent; random sequences

1. Introduction
Chaos has attracted significant attention in various engineering fields due to its inher-

ent properties such as sensitivity to initial conditions, aperiodic behavior, and broadband
spectrum. In particular, chaotic systems have been widely utilized in cryptography [1–4],
communication systems [5–7], and pseudo-random number generation (PRNG) [3,8–11],
where their intrinsic complexity and unpredictable behavior play a crucial role in enhancing
security and improving randomness.

Conventional chaotic maps are defined over the real field. When such maps are imple-
mented on digital hardware, the inherent dynamical properties are inevitably degraded
due to the limitations of finite precision [12–20]. In the finite-precision domain, rounding
and truncation errors accumulate over iterations, resulting in the disturbances in the gener-
ated trajectories. This issue is particularly critical for chaotic systems, because even some
initially close trajectories diverge after some iterations due to the sensitivity to the initial
conditions, which is quantified by the Lyapunov exponent [12]. Moreover, the extent of
degradation varies with the computational precision of the hardware [13,15,21], preventing
the preservation of the expected chaotic behavior in the digital domain. As a result, when a
chaotic map is implemented digitally, it may suffer from the finite-precision effects. This
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may result in not only the generated trajectories to differ from the ideal chaotic behavior
but also some of their statistical properties modified [20].

To address these limitations and enable practical applications of chaos, several tech-
niques have been proposed to enhance the robustness of chaotic maps in the digital
domain [3,16,17,19,22]. For example, ref. [17,22] proposed a perturbation framework to
disturb chaotic orbits and avoid extreme dynamic degradation. In ref. [3], least significant
bit extension was applied to the binary shift chaotic map to generate true chaotic orbits
under finite precision. Finally, ref. [16,19] analyzed the impact of digital circuits on chaotic
systems and introduced a control term to improve periodic orbits.

Meanwhile, to clarify the notion of chaos in digital environments, several studies
have focused on defining chaos in the discrete domain [23–25]. For example, ref. [23]
demonstrated that even when a continuous chaotic system is quantized into a semi-digital
form, it can still satisfy Devaney’s definition of chaos under certain conditions. In addition,
ref. [24,25] introduced the Discrete Lyapunov Exponent (dLE) as a reformulation of the
conventional Lyapunov exponent for discrete systems. These works showed that when
the size of the discrete space tends to infinity, a positive dLE implies chaotic behavior,
and emphasized that bijective structures can eliminate stable periodic orbits, enabling
sustained chaotic dynamics.

Building on these foundations, various studies have proposed new chaotic maps in
discrete spaces and analyzed their dynamical behavior. These studies primarily evaluate
whether the proposed maps exhibit chaotic properties using the dLE [9,14,26–29]. For ex-
ample, ref. [9] introduced a digitalized modified logistic map, while ref. [14] proposed
a discrete chaotic map family based on the discrete Arnold Cat Map over integer rings.
In [29], it was shown that the integer sequences derived from interpreting the states of
a primitive LFSR exhibit chaotic behavior. This is further generalized to the case where
the connection polynomial is irreducible [30]. In addition, various discrete chaotic sys-
tems have been proposed, including those based on the composition of permutations [27],
as well as integer- and finite-field-based constructions [26,28]. Discrete chaotic maps de-
fined in the discrete domain play a vital role in cryptography and pseudorandom number
generation, and continued research is required to support their broader use in various
digital applications.

The skew tent map is known to exhibit chaotic behavior over the entire range of control
parameters t ∈ (0, 1), and owing to this property, it has been widely applied in various
fields [1,31–34]. However, despite this advantage, under finite-precision implementation,
binary sequences generated by a single skew tent map can pass the NIST SP800-22 tests only
when t is extremely close to 0.5, and their correlation properties are also unsatisfactory [31].
This ultimately serves as a limitation that restricts the inherent advantage of exploiting
the entire range of t ∈ (0, 1), thereby diminishing the potential applications of skew tent
map-based sequences [31].

In this paper, we introduce a new discrete chaotic map which leverages an interest-
ing structural property of the digitalized skew tent map. The proposed map satisfies the
definition of discrete chaos for all control parameters and, as the size of the discrete space
increases, its dLE approaches the maximal value attainable in the same domain. It can there-
fore be regarded as a maximally chaotic map as defined in [25,35], meaning that it exhibits
the most chaotic behavior among maps defined over the same discrete space. Furthermore,
numerical experiments confirm that the proposed map generates integer sequences with
high complexity, and the derived binary sequences also demonstrate superior complexity
and correlation properties, validating their potential use in various applications.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
map. Section 3 investigates its chaotic behavior through dLE analysis. Section 4 presents
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numerical experiments demonstrating the improved correlation and randomness properties
of the proposed map compared to the skew tent map. Finally, Section 5 discusses some
concluding remarks for future research.

2. Discrete Skew Tent Map and the Proposed Map
The original skew tent map [1,24,31] is defined over the interval [0, 1] of real numbers

as follows:

ft(x) =


x
t , 0 < x ≤ t,

1−x
1−t , t < x ≤ 1,

(1)

where 0 < t < 1 is a control parameter. It is known to exhibit chaotic behavior for all
values of t [1,31]. When ft(x) is discretized with m-bit precision, it can be redefined as a
discrete skew tent map, which is a bijection over the integers in the range [0, 2m), and can
be expressed as follows [1]:

Sa(z) =


⌈

z+1
((a/2m)

⌉
− 1, 0 ≤ z < a,⌊

2m−(z+1)
1−(a/2m)

⌋
, a ≤ z < 2m,

(2)

where 0 < a < 2m is an integer control parameter. Figure 1 shows the phase portrait of the
discrete skew tent map with m = 7 for the various values of the control parameter a.

Figure 1. Phase portraits of Sa with the precision m = 7 and a = 30, a = 70 and a = 27 − 30 = 98.

Theorem 1. Let a ∈ (0, 2m) be an integer. Let Sa and S2m−a denote the discrete skew tent
maps defined in (2) with the control parameters a and 2m − a, respectively. For any two integers
z, z′ ∈ [0, 2m − 1], if Sa(z) = S2m−a(z′), then z ≡ z′ (mod 2).

Proof. For convenience, we represent the control parameter as a = δ2k, where δ > 0 is an
odd integer and 0 ≤ k < m. We rewrite Sδ2k (z) and S2m−δ2k (z′) as follows:

Sδ2k (z) =


⌈
(z+1)2m−k

δ

⌉
− 1, 0 ≤ z < δ2k,⌊

(2m−(z+1))2m−k

2m−k−δ

⌋
, δ2k ≤ z < 2m,

and

S2m−δ2k (z′) =


⌈
(z′+1)2m−k

2m−k−δ

⌉
− 1, 0 ≤ z′ < 2m − δ2k,⌊

(2m−(z′+1))2m−k

δ

⌋
, 2m − δ2k ≤ z′ < 2m.

Now, we will go through all the values of z in the first equation of Sδ2k in the range
0 ≤ z < δ2k or 1 ≤ z + 1 < δ2k + 1. Due to the ceiling function, we distinguish these values
of z + 1 into two cases. Case 1 is where z + 1 is a multiple of δ and Case 2 is where z + 1 is
not a multiple of δ.
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• Case 1. We consider the values of z+ 1 = iδ in the first equation of Sδ2k for some i. Then
the values of Sδ2k will match with those of the first equation of S2m−δ2k corresponding
to the input z′ + 1 = i(2m−k − δ). Therefore, both z + 1 = iδ and

z′ + 1 = i(2m−k − δ) = i2m−k − (z + 1)

must have the same parity. We note that then the value i2m−k − 1 from Sδ2k will not
have any match with the second equation of the map S2m−δ2k above since S2m−δ2k is
a bijection.

• Case 2. We consider the values of z + 1 that is not a multiple of δ in the first equation
of Sδ2k , and observe in this case that⌈

(z+1)2m−k

δ

⌉
− 1 =

⌊
(z+1)2m−k

δ

⌋
.

This time, the value above can be matched with some values from the second equation
of the map S2m−δ2k above. Now, assume that⌊

(z+1)2m−k

δ

⌋
=

⌊
(2m−(z′+1))2m−k

δ

⌋
,

and z + 1 ̸≡ 0 (mod δ). Then, we have z + 1 = 2m − (z′ + 1) or z′ = 2m − (z + 2),
and both z and z′ have the same parity. Note again that S2m−δ2k is a bijection. Therefore,
since any of the values from the first equation of Sδ2k for z + 1 ̸≡ (mod δ) has been
matched with the second equation of S2m−δ2k , it cannot be matched with the first
equation of S2m−δ2k .

Remaining cases are the values of the input to the second equation of Sδ2k . The cases
when the output match with either the first or the second equation of the map S2m−δ2k can
be done similarly.

Recall that z and z′ always have the same parity if Sa(z) = S2m−a(z′). Therefore,
by picking up any one of Sa and S2m−a for all even inputs and picking up the other for
all odd inputs, we may construct a new bijection over the same set of integers in the
range [0, 2m).

Definition 1. For z = 0, 1, . . . , 2m − 1, we define a map Ca as

Ca(z) =

Sa(z), if z is even,

S2m−a(z), if z is odd,
(3)

where 0 < a < 2m is a given control parameter.

Figure 2 shows the phase portraits of the proposed map with m = 7 for three different
control parameters. Interestingly, the phase portraits for a = 30 and a = 98 (=128 − 30)
appear visually similar, yet they produce completely different output sequences. This
difference in output behavior is further supported by their low cross-correlation values,
as discussed in Section 4.4.

Figure 3 illustrates how the proposed map is constructed according to Definition 1.
In this example, C10 for m = 5 is formed by sampling S10(z) at even indices and S22(z) at
odd indices, visually demonstrating the piecewise composition of the map. We note that
when a = 2m−1, the pair Sa and S2m−a coincide, and the proposed map becomes the same
as the discrete skew tent map with a = 2m−1, which is in fact the discrete tent map.
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Figure 2. Phase portraits of Ca with the precision m = 7 and a = 30, a = 70 and a = 27 − 30 = 98.

Figure 3. Proposed map C10 with m = 5 from S10 and S22.

Theorem 2. For any control parameter 0 < a < 2m, the proposed map Ca defined in (3) is a
bijection over the integers in the range [0, 2m − 1].

Proof. The Ca in (3) is constructed by combining two symmetric skew tent maps Sa and
S2m−a by taking Sa(i) for only even i and taking S2m−a(i) for only edd i. Therefore, the input
domain remains the same as [0, 2m − 1]. Recall that both Sa and S2m−a are bijections over the
same range [0, 2m − 1]. By Theorem 1, when restricted to even and odd inputs, the output
ranges of Sa and S2m−a are disjoint and now their union becomes the range [0, 2m − 1].

3. Chaotic Behavior of the Proposed Map
We now analyze the chaotic behavior of the proposed map. In general, a permutation

F is said to be discretely chaotic if its dLE satisfies [24,25]

lim
M→∞

λF > 0, (4)

where M is the size of the discrete domain of F.

Theorem 3. Let m be a positive integer and consider the proposed map Ca with control parameter
a ∈ (0, 2m). Then, the discrete Lyapunov exponent λCa asymptotically approaches m ln(2) as m
increases, for all a, except for a = 2m−1.

The dLE of Ca is known to be ln(2) when a = 2m−1 [24].

Proof. To clarify the notion of neighborhood in a discrete ordered set, consider the domain
M := {0, 1, 2, . . . , 2m − 1} of the map Ca. Here, the neighbors of i ∈ M are i − 1 and
i + 1 for i = 2, 3, . . . , 2m − 2. It is to be noted that 0 ∈ M has only one neighbor 1,
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and 2m − 1 ∈ M also has only one neighbor 2m − 2. Then, the dLE λCa of a permutation
Ca on the set M is defined as follows [24,25]:

λCa =
1

2m

2m−1

∑
i=0

ln |Ca(zi+1)− Ca(zi)|, (5)

where zi = i for i ∈ M and z2m = 2m − 2.
According to the definition of the dLE in (5), it is computed by averaging the log-

arithmic differences between the outputs of neighboring input values over the domain.
To analyze how these differences behave for the proposed map Ca(z) as m increases, we
introduce a normalized real parameter t ∈ (0, 1), which is independent of m, and express
the control parameter a in terms of t as

a = ⌊t 2m⌋.

Then, the normalized proposed map is a combination of a pair of symmetric skew tent
maps in (1), which is shown in Figure 4. Note that t = 0.5 corresponds to the control
parameter a = 2m−1 which is not considered here. Accordingly, we focus on the parameter
range t ∈ (0, 1)\{0.5} in the proof.

Figure 4. Normalized Ca and approximate Ca.

Then the value 2mλCa in (5) becomes approximately the area under the natural log
of the absolute difference between two lines in the figure. Since the left and right are
symmetric, we only have to calculate the left part (shaded part) and double the result. It
consists of two parts: 0 ≤ x ≤ t and t ≤ x < 1/2, where x is the the normalized real
variable corresponding to the discrete variable z by the relation

z = ⌊x 2m⌋.

Then, for 0 ≤ x ≤ t, the difference becomes

x
t
− x

1 − t
= x

1 − 2t
t(1 − t)

.

For t ≤ x < 1/2, the difference becomes

1 − x
1 − t

− x
1 − t

=
1 − 2x
1 − t

.
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Therefore, the value λCa in (5) can now be computed using the approximate Ca in Figure 4
as follows:

λCa ≈
2

2m

(∫ t2m

0
ln
(

z
1 − 2t

t(1 − t)

)
dz +

∫ 2m−1

t2m
ln
(

1 − 2z
1 − t

)
dz

)
≈ m ln(2),

as m gets larger and larger.

Remark 1. The largest dLE λFmax has been derived for all permutations over the discrete phase
space {0, 1, . . . , M − 1}, where M is an even integer [25,35]. When M = 2m, the largest dLE λFmax

is given by

λFmax(m)=
2m−1 +1

2m ln 2m−1+
2m−1 −1

2m ln (2m−1 +1). (6)

The permutations that achieve this largest λFmax are referred to as maximal discrete chaotic maps,
as they possess the largest possible dLE among all permutations on phase spaces of the same
size [25,35]. It is easy to see that λFmax(m) → m ln(2) as m gets larger and larger. We extend this
notion and define the asymptotic version of this maximal chaos.

Definition 2. A discrete chaos map F is called asymptotically maximally discrete chaotic if its dLE
λF > 0 satisfies

lim
m→∞

λF
λFmax

= 1,

where λFmax is given in (6).

Corollary 1. The proposed map Ca for any control parameter a ∈ (0, 2m)\{2m−1} is asymptoti-
cally maximally discrete chaotic.

Figure 5 compares the dLE λCa of the proposed map with the maximal dLE λFmax

among all permutations over the set {1, 2, . . . , 2m − 1}, computed from (6), for m = 8,
m = 13 and m = 22. The horizontal dashed line marks the maximal dLE λFmax for each m,
and the vertical dashed line indicates the location of the control parameter a = ⌊0.3 · 2m⌋
corresponding to t = 0.3. Notably, the local minimum of λCa always occurs at a = 2m−1,
and this value equals ln(2), consistent with the dLE of the symmetric skew tent map S2m−1

or the proposed map C2m−1 as previously mentioned. This figure illustrates how the ratio
λCa /λFmax gradually approaches 1 as m increases, as indicated by Corollary 1.

Figure 5. The dLE of Ca with precision m = 8, m = 13 and m = 22.
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4. Numerical Simulations
4.1. Bifurcation Diagrams

The bifurcation diagram is a graphical tool used to visualize the dynamic behavior of
a chaotic system. It shows how the output states of the chaotic map are distributed as its
control parameter varies within a given interval [7].

Figure 6 presents the bifurcation diagrams of the proposed map for m = 8 and
m = 9, obtained by iterating the map from the initial state z0 = 0. For each control
parameter a, the integer states zn are plotted to illustrate how the distribution evolves
as a varies. As shown in both cases of Figure 6, the state points are densely and almost
uniformly dispersed over the entire phase space, forming a distribution that nearly covers
the full interval [0, 2m − 1]. Although a few short-period cycles appear for certain control
parameters, these are dependent on the initial condition; for most cases, the trajectories
generated from z0 = 0 still occupy the entire state space densely. Therefore, the bifurcation
diagrams confirm that the proposed map maintains nearly ergodic and well-dispersed
behavior over a broad parameter range.

Figure 6. Bifurcation diagrams of Ca for m = 8 and m = 9 with the initial value z0 = 0.

4.2. Complexity of Integer Sequences

To evaluate the complexity of integer sequences generated by the proposed map
and the discrete skew tent map, we employ two widely used entropy-based measures:
approximate entropy (ApEn) [36] and permutation entropy (PE) [37].

ApEn quantifies the regularity and unpredictability of a time series by estimating the
logarithmic likelihood that similar patterns of length L remain similar within a tolerance
r when extended to length L + 1 [36]. It is then computed as the logarithmic difference
between the average probabilities of similarity for pattern lengths L and L + 1. In this
evaluation, we adopt commonly used parameters L = 2 and r = 0.2σ, where σ denotes the
standard deviation of the sequence and r serves as the threshold for determining whether
two subsequences are considered similar [36]. A higher ApEn value indicates greater com-
plexity and lower predictability, which are desirable characteristics of chaotic sequences.

PE quantifies the complexity of a time series by evaluating the distribution of ordinal
patterns formed by subsequences of length L separated by an embedding delay D [37].
Each subsequence is ranked in ascending order, and the relative frequencies of all possible
order permutations are computed to obtain a normalized Shannon entropy value. In this
evaluation, we adopt the commonly used parameters L = 6 and D = 2, as suggested
in [22,37]. Larger PE values imply more uniformly distributed ordinal patterns, reflecting
higher dynamical complexity and stronger chaotic behavior.

We consider the case of m = 16, for which the control parameter a ranges over
(0, 65,536), and compute ApEn and PE for the output sequences. The results, presented in
Figure 7, confirm that the proposed map consistently produces significantly more complex
and less predictable integer sequences than the discrete skew tent map.
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Figure 7. Comparison of ApEn and PE of integer sequences.

4.3. Randomness of Binary Sequences

We use the NIST SP800-22 statistical test suite [38], which comprises 15 sub-tests
conducted at a significance level of α = 0.01. A test is considered passed if its pass rate is at
least 0.96 [38].

The simplest method for generating binary sequences is the threshold-based conver-
sion, which directly reflects the statistical bias of the map’s time series. It is well known
that discrete skew tent maps fail to pass the NIST tests under this method [31]. To examine
whether the proposed map exhibits such bias, we first generated binary sequences using
the threshold-based method and evaluated them with the NIST test suite.

In this threshold-based approach, binary sequences are generated by iterating Ca

and mapping each state xn ∈ {0, 1, . . . , 2m − 1} to 0 if xn < 2m−1 and to 1 otherwise. We
set m = 32 and extract 100 subsequences of length 106 from a single sequence of length
108. Table 1 reports the pass rates of each sub-test for binary sequences generated by Ca,
where a = ⌊t2m⌋ for various values of t. For sub-tests with multiple components (marked
with an *), the minimum proportion is reported. As shown in Table 1, the proposed map
passes all NIST tests for every tested value of a, suggesting that its output sequences are
statistically well balanced.

Table 1. NIST test results for binary sequences of length 108 from the proposed map using the
threshold-based method.

Statistical Test
Proposed Map

t = 0.15 t = 0.30 t = 0.45 t = 0.60 t = 0.75 t = 0.90

Frequency 0.99 0.97 0.99 1.00 1.00 1.00

Block Freq. 0.98 1.00 1.00 0.99 1.00 1.00

Cumulative * 0.98 0.96 0.99 1.00 1.00 1.00

Runs 0.99 0.97 1.00 0.99 0.98 1.00

Longest Run 0.99 1.00 0.98 1.00 0.99 1.00

Rank 1.00 1.00 0.98 0.99 0.99 0.99

FFT 0.99 0.99 1.00 0.99 1.00 0.98

Nonoverlap. * 0.96 0.96 0.96 0.97 0.96 0.96

Overlap. 1.00 0.99 0.99 0.98 0.99 1.00

Universal 0.99 1.00 1.00 0.97 0.99 0.97

ApEn 0.98 0.98 0.99 0.96 0.99 0.98

Rand. Exc. * 1.00 0.98 0.96 0.96 0.96 0.96

Ran. Ex. Var. * 0.96 0.98 0.96 0.96 0.96 0.96

Serial * 0.97 0.98 0.99 0.98 0.97 0.99

Linear Comp. 0.97 0.99 0.98 0.99 0.99 0.99

* the minimum values of multiple tests.
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To further validate the randomness of the proposed map, we generated binary se-
quences using an XOR-based conversion under the same experimental conditions as the
threshold-based case. In this approach, a new binary sequence was obtained by perform-
ing a three-bit XOR operation across different bit positions of each m-bit integer output,
specifically the 1st, (m − 1)-th, and m-th bits. Table 2 presents the NIST test results for the
XOR-based sequences generated from the proposed map with m = 32. As shown, these
sequences also pass all NIST tests for every tested value of a, indicating that the generated
binary sequences exhibit strong statistical randomness.

Table 2. NIST test results for binary sequences of length 108 from the proposed using the
XOR-based method.

Statistical Test
Proposed Map

t = 0.15 t = 0.30 t = 0.45 t = 0.60 t = 0.75 t = 0.90

Frequency 1.00 0.99 0.99 0.99 0.97 0.99

Block Freq. 1.00 1.00 0.99 1.00 1.00 1.00

Cumulative * 1.00 0.99 1.00 0.99 0.98 1.00

Runs 0.98 1.00 1.00 1.00 0.98 0.98

Longest Run 1.00 1.00 0.99 1.00 1.00 1.00

Rank 0.99 1.00 1.00 0.96 1.00 1.00

FFT 1.00 0.99 1.00 1.00 1.00 0.99

Nonoverlap. * 0.97 0.97 0.97 0.96 0.98 0.97

Overlap. 1.00 0.98 0.98 0.98 1.00 1.00

Universal 1.00 0.97 0.99 0.99 0.98 0.98

ApEn 0.99 1.00 0.98 0.98 0.99 0.98

Rand. Exc. * 0.98 0.98 1.00 0.98 0.98 0.98

Ran. Ex. Var. * 0.98 0.98 0.97 0.98 0.98 0.98

Serial * 0.97 1.00 0.98 0.99 0.99 1.00

Linear Comp. 0.99 0.99 0.99 0.98 1.00 0.98

* the minimum values of multiple tests.

4.4. Correlation Analysis of Binary Sequences

Auto-correlation and cross-correlation are key metrics for evaluating the dependency
structure in (binary) sequences from chaotic maps [19,31]. In this subsection, we examine
these properties for the proposed map by generating binary sequences using the same
binary mapping rules described in the previous subsection.

Figure 8 shows the auto-correlation results for binary sequences generated from
the proposed map using the threshold-based conversion. Each sequence has a length of
30,000 with m = 16, and two representative control parameters were tested: a = 9830 (left)
and a = 29,491 (right). In both cases, the maximum side-lobe values remain approximately
0.0225. Under the same parameters, the XOR-based sequences exhibited a comparable
maximum side-lobe value of approximately 0.0237.

As mentioned earlier, two proposed maps Ca and C2m−a have visually similar phase
portraits (Figure 2 for m = 7 and a = 30), but they are in fact distinct in detail. Figure 9
shows the cross-correlation between sequences generated from the two proposed maps:
a = 9830 and 216 − 9830 (left), and a = 29,491 and 216 − 29,491 (right), both with m = 16.
The maximum cross-correlation values are 0.022 and 0.023, respectively, indicating suffi-
ciently low inter-sequence correlations.
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Figure 8. Auto-correlation of some binary sequences from the proposed map.

Figure 9. Cross-correlation of some binary sequences from two proposed maps.

The current result is only some supporting evidence to demonstrate that binary
sequences generated from the proposed map through some simple conversion rules can still
exhibit reasonably good correlation properties in practice. The proof or the optimization of
the correlation performance is beyond the scope of the present work. We note further that
the correlation characteristics may be improved by employing more sophisticated binary
mapping rules.

5. Concluding Remarks
In this paper, we proposed the new discrete chaotic map derived from a pair of sym-

metric discrete skew tent maps. We proved that it is bijective and asymptotically maximally
discrete chaotic. We also conducted computational analyses on both the dynamical behav-
ior of the map and the complexity of its derived sequences. The results demonstrate that
the proposed map exhibits desirable characteristics such as uniformity, unpredictability,
strong randomness, and low correlation. These properties make the proposed map particu-
larly suitable for PRNG design, where statistical balance and unpredictability are essential,
and also indicate its potential applicability to cryptography, secure communications, digital
watermarking, and other information-security-related systems.

Periodicity of output sequences is another fundamental aspect of discrete dynamical
systems. While some empirical observations have been made, a comprehensive under-
standing of how the period length behaves within the parameter space of the proposed
map is still lacking and could be further explored in future work. As illustrated in the
bifurcation diagrams, most control parameters yield long-period trajectories, whereas short
cycles occasionally appear for specific control parameters and initial conditions. A more
systematic investigation is therefore required to clarify how the period length depends on
the control parameters, initial conditions, and the structure of the discrete state space.
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Furthermore, the proposed map is based on a symmetric two-piecewise structure,
and its extension to multi-piecewise forms could also be considered in future work. Al-
though the proposed map already achieves asymptotically maximally discrete chaos, in-
creasing the number of segments may not necessarily yield stronger chaotic behavior.
Nevertheless, there remains potential to design new discrete chaotic maps within this
framework by extending the discrete skew tent map to multi-piecewise forms. A rigorous
theoretical investigation is therefore required to determine whether such extensions can
also preserve chaotic behavior.
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