¼ö¾÷ÀÏÁö -- À¯ÇÑüÀÌ·Ð ¹× ÀÀ¿ë, 2001Çг⵵
1Çбâ, Àü±âÀüÀÚ°øÇаú
¿©·¯ºÐÀÌ ÀÌ ÆäÀÌÁö¸¦ ÀдÂ
³¯Â¥¸¦ ±âÁØÀ¸·Î ÇÏ¿©
ÀÌÀüÀÇ ±â·ÏÀº ÀÌ¹Ì ¼ö¾÷½Ã°£¿¡
´Ù·ç¾ú´ø ³»¿ëÀ» °£Ã߸° °ÍÀÌ°í ÀÌÈÄÀÇ ±â·ÏÀº ´ë·«ÀûÀÎ °èȹÀÔ´Ï´Ù.
ÀÚÁÖ µé·¯¼ ¿¹½À/º¹½À¿¡
µµ¿òÀÌ µÇ±â¸¦ ¹Ù¶ó¸ç, ¿½ÉÈ÷ °øºÎÇϱ⠹ٶø´Ï´Ù.
´ã´ç±³¼ö: ¼ÛÈ«¿±
FIRST QUARTER
(GO
TO 1st 2nd 3rd 4th quarter; top today bottom )
1ÁÖ
3¿ù 2ÀÏ(±Ý3)
°³°.
- ¼ö¾÷ °èȹ¼
¹èÆ÷, ±³Àç¼Ò°³, class rule ¼³¸í, Ãâ¼®ºÎÈ®ÀÎ, 5ȸ ¹«´Ü°á¼® = FÇÐÁ¡, »çÀü
Å뺸(À̸ÞÀÏ, ÀüÈ, ÂÊÁö)ÇÑ °æ¿ì´Â ¹«´Ü°á¼® ¾Æ´Ô.
- quiz and
solution
3¿ù 7ÀÏ(¼ö23)
- Chapter
1 Prologue
- Field,
infinite, finite
- integers
mod p
- Chapter
2 Euclidean Domains and Euclid's Algorithm (Theorem 2.1)
- Integral
Domain, Euclidean Domain, GCD
- Three examples
of ED: Integers, Polynomials over a field, Gaussian integers
- Theorem
2.1 Over ED, GCD always exists and expressible as a linear combination
2ÁÖ
3¿ù 9ÀÏ(±Ý3)
- Problem
2-10: ¹®Á¦ ¼öÁ¤
- Euclid's
Algorithm: Proof and Extended Version, examples
- Chapter
3 Unique Factorization in Euclidean Domains (Theorem 3.6)
- units,
associates, prime, relatively prime
- Five
Lemmas for Theorem 3.6
- HW#1:
Chapter 2: 2,3,4,10,11, and Chapter 3: 2,6,8,9,11
- ¹Ú»ç°úÁ¤
¼ö°»ýÀÇ ÁöÁ¤ topic ¼±Á¤: Çбâ ÈĹݺο¡ ¾à 3½Ã°£¾¿ ¹ßÇ¥¿¹Á¤
- Exponential
Sum, Finite Geometry, Coding Theory, all from the book "Intro.
to Finite Fields..." by Lidl and Niederreiter
3¿ù 14ÀÏ(¼ö23)
- Theorem
3.6
- Chapter
4 Building Fields from Euclidean Domains (Theorem 4.1
and many examples)
- Chapter
4 Problems: 9,10,11 -- to be included in HW#2
- Everything
of Chapter 4 was covered except for one last long example.
3ÁÖ
3¿ù 16ÀÏ(±Ý3)
- HW#1
collected
- Last example
of Chapter 4 and a little more.
- Theorem:
Given a size q, there exists one and only one field of size q up to
isomorphism.
- Some
concept from Linear Algebra
- def
of group, field, vector space, subspace
- number
of k-dim subspaces of Vn over F2
- sum
and product of subspaces
3¿ù 21ÀÏ(¼ö23)
- Some
concept from Linear Algebra
- Linear
Transformation, null space, range space, some examples
- homomorphism,
isomorphism, and automorphism
- some
results of group theory
- subgroup,
index, cosets, etc
- Chapter
5 begins
- Theorem
5.1: a FF with size q -> q=p^m
for some prime p and integer m>0.
- Theorem
5.2: a=nonzero element of FF of size q ->
ord(a) divides q-1.
4ÁÖ
3¿ù 23ÀÏ(±Ý3)
- Chapter
5 continues. Let F be a finite field of size q.
- Lemma
5.3: if p(x) over F is of degree m, then p(x)=0 has at most m roots
over F.
- Lemma
5.4: if alpha in F has order n, then the order of alpha to the s
is equal to n divided by gcd(s,n).
- Theorem
5.5: if t is a positive integer, then F contains either no elements
of order t or exactly phi(t) elements of order t.
- Theorem
5.6: summation of phi(d) over all divisors d of n is equal to n.
(proof: self-exercise)
- Theorem
5.7: if t divides q-1 then F contains exactly phi(t) elements of
order t.
3¿ù 28ÀÏ(¼ö23)
- HW#2
(10 ¹®Ç×) due: Chapter
5°¡ ³¡³ª´Â ½Ã°£ÀÇ ´ÙÀ½ ¼ö¾÷½Ã°£ ½ÃÀÛ½Ã.
- Chapter 4: 9, 10, 11
- Extra Proof that dimension of V is equal to nullity
and rank of a linear transformation T from V.
- Chapter 5: 3, 4, 6, 7, 8, 14
- Chapter
5 continues.
- Gauss
Algorithm of finding a primitive elements: Big example with F of
size 25.
- Lemma
5.8: if ord(alpha)=m and ord(beta)=n, and (m,n)=1, then ord(alpha
beta)=mn.
- minimal
polynomials: definitions and existence.
- Theorem
5.9: F is a field with size p^m. For each alpha in F, there exists
a unique monic polynomial p(x) in F_p [x] such that (1) p(alpha)=0,
(2) deg(p) <= m, and (3) if f(x) in F_p [x] satisfies f(alpha)=0
then p(x) divides f(x).
- def:
such a polynomial p(x) is called the minimal polynomial of alpha
with respect to F_p.
- NOTE:
minimal polynomial is irreducible.
- when
alpha is a primitive element the p(x) is called primitive polynomial.
SECOND QUARTER (GO TO 1st 2nd 3rd 4th quarter; top today bottom )
5ÁÖ
3¿ù 30ÀÏ(±Ý3)
Finish Chapter 5.
We assume
that F is a finite field of size q^n and K is its subfield of size q. We
assume that alpha is an element of F.
- Lemma 5.10:
alpha in F of size q^n is in fact an element of K of size q (K is a
subfield of F) if and only if alpha^q = alpha.
- Lemma 5.11:
p choose k is a multiple of p for k=1,2,...,p-1. p=prime.
- Lemma 5.12:
char(F)=p. then (alpha + beta)^p = alpha^p + beta^p
- def: conjugates
of alpha in F (of size q^n) with respect to K (of size q, and K is a
subfield of F) are alpha, alpha^q, alpha^(q^2), alpha^(q^3),....
- Number
of conjugates of alpha with respect to K is called the degree
of alpha with respect to K.
- Theorem
5.13: the degree d of alpha is a divisor of n. it is the smallest positive
integer such that q^d = 1 (mod ord(alpha)). Furthermore, if a=b (mod
d) then alpha^(q^a)=alpha^(q^b).
- Theorem
5.14: the minimal polynomial of alpha in F with respect to K is given
by (x-alpha)(x-alpha^q)(x-alpha^(q^2))...(x-alpha^(q^(d-1))) where d
is the degree of alpha with respect to K.
- Example
5.8: self-exercise.
- HW#2
- due next Wed.
4¿ù 4ÀÏ(¼ö23)
Chapter 6 (Existence, Uniqueness, and subfields)
- HW#2 collected
- Review
of materials covered so far
- ch4:
construction of a finite field of size q
- ch5:
abstract properties of a finite field of size q; def and properties
of minimal polynomials
- Existence
& uniqueness & subfields
- Theorem
6.1: x^(q^n) - x is the product of V_d(x) over all the divisors d of
n, where V_d(x) is the product of all the monic irreducible polynomials
of degree d over K of size q.
- Corollary
6.2: q^n = summation of d I_d over all the divisors d of n, where I_d
is the number of monic irreducible polynomials of degree d over K.
- Another
proof of Cor 6.2 --- read, study, and summerize it as an
extra problem #1 of HW#3
- definition
of mu(n) for n=1,2,... called Mobius-mu function
- properties
of mu(n):
- it
is multiplicative, i.e. if (a,b)=1 then mu(ab)=mu(a) mu(b): easy
proof
- for
n>1, the summation of mu(d) over all the divisors d of n becomes
0: proof by induction.
6ÁÖ
4¿ù 11ÀÏ(¼ö23)
Chapter 7
- n-th cyclotomic
polynomial over C
- n-th cyclotomic
polynomial over GF(q) of char=p
- theorem
7.1: some relations on cyclotomic polynomials
- theorem
7.2: existence and factoring of n-th cyclotomic polynomial over GF(q)
of char=p
- examples
7ÁÖ
4¿ù 13ÀÏ(±Ý3)
Chapter 7
- example
7.4: 180-th cyclotomic polynomial over GF(2)
- factorization
of n-th cyclotomic polynomial over GF(q)
- never
irreducible when n is not of the form 1, 2, 4, p^t, 2p^t.
- when
n is of the form 1, 2, 4, p^t, 2p^t, it is
- irreducible,
if q is primitive root mod n
- not
irreducible, otherwise.
- Berlekamp
algorithm of factoring a polynomial over GF(q)
- Theorem
7.3
- HW#3
Problems (due: 5¿ù 2ÀÏ ¼ö¿äÀÏ ¼ö¾÷½Ã°£)
- Two extra problems in Chapter 6
- Exercise Problems in Chapter 7: 4,5,6,7,8,9,10,11
4¿ù 18ÀÏ(¼ö23)
Chapter 7
- FINISH:
Berlekamp algorithm of factoring a polynomial over GF(q)
THIRD QUARTER (GO
TO 1st 2nd 3rd 4th quarter; top today bottom )
8ÁÖ
4¿ù 20ÀÏ(±Ý3)
Chapter 8
- definition
and properties of trace function from GF(p^t) to GF(p)
9ÁÖ
5¿ù 2ÀÏ(¼ö23)
Chapter 8
- calculation
of trace functions
- solvability
of quadratic equations over GF(q)
- HW#4
-- due 5¿ù 23ÀÏ (¼ö) ¼ö¾÷½Ã°£ ½ÃÀÛ½Ã
- Chapter 8 Problems: 3, 9, 11, 13, 19 (½ÃÇè¹üÀ§¿¡
Æ÷ÇÔ)
- Chapter 9 Problems: 3, 4, 5, 6, 9 (½ÃÇè¹üÀ§¿¡
Æ÷ÇÔ ¾ÈµÊ)
10ÁÖ
5¿ù 4ÀÏ(±Ý3)
Chapter 8
- dual basis
and bit-serial multiplication over GF(2^m)
- 4¼¼´ë À̵¿Åë½Å
¿öÅ©¼¥ Âü¼®Â÷ ÈÞ°: ÀÌ ºÎºÐÀº »ý·«ÇÕ´Ï´Ù.
- Chapter
8ÀÇ HW ¿¬½À¹®Á¦ Áß¿¡¼ ÀÌ ºÎºÐÀº »ý·«ÇÕ´Ï´Ù.
5¿ù 9ÀÏ(¼ö23)
Chapter 9
- Linear
Recurrence
- Properties
of LRS (case: f(x) is irreducible)
11ÁÖ
5¿ù 11ÀÏ(±Ý3)
Chapter 9
- Properties
of LRS (case: f(x) is irreducible)
5¿ù
16ÀÏ(¼ö23) ÈÞ°:±¹Á¦Çмú´ëȸ Âü¼® ¹× ³í¹®¹ßÇ¥ "Sequences
and Their Applications," Bergen, Norway.
Áß°£½ÃÇè (¹üÀ§: óÀ½ºÎÅÍ
¿©±â±îÁö) up to Chapter 8 (È®Á¤)
-- emphasis
on Chapters 5,6,7,8
1. ¸ðµç HW ¹®Á¦¸¦ º¹½ÀÇÒ °Í
2. À§ÀÇ ¸ðµç TheoremÀÇ Áõ¸íÀ» º¹½ÀÇÒ °Í (ƯÈ÷ 5Àå-8Àå
³»¿¡ °øºÎÇÑ ¸ðµç Lemma¿Í TheoremÀÇ Áõ¸íÀ» ÇÊÈ÷ ¼÷ÁöÇÒ °Í)
3. ±×¸®°íµµ ½Ã°£ÀÌ ÀÖÀ¸¸é HW¿¡ Æ÷ÇÔµÇÁö ¾ÊÀº ¹®Á¦¸¦
Ç®¾îº¼ °Í.
4. ¿¹»óÇϱâ·Î, ¹®Á¦Ç®ÀÌ 5-6°³ Á¤µµ, Áõ¸í¹®Á¦ 5-6°³
Á¤µµ. (Á¤È®È÷ 2½Ã°£)
12ÁÖ
5¿ù 18ÀÏ(±Ý3)
ÈÞ°:±¹Á¦Çмú´ëȸ Âü¼® ¹× ³í¹®¹ßÇ¥ "Sequences and Their Applications,"
Bergen, Norway, 5¿ù 12ÀÏ - 5¿ù 18ÀÏ.
5¿ù 23ÀÏ(¼ö23) ¹Ú»ç°úÁ¤ ¹ßÇ¥ 1 (½Å¹ÎÈ£: Exponential Sums)
- character
- additive
character of a finite field
- multiplicative
character of a finite field
FOURTH QUARTER (GO
TO 1st 2nd 3rd 4th quarter; top today bottom )
13ÁÖ
5¿ù 25ÀÏ(±Ý3)
Çаú¹æħÀ¸·Î ÈÞ°ÇÕ´Ï´Ù.
5¿ù 30ÀÏ(¼ö23) ¹Ú»ç°úÁ¤ ¹ßÇ¥ 2 (±èÀÏÈ£: Finite Geometries)
- Affine geometry of order 2 over field K
- Projective geometry of order 2 over field K
- Finite Progective Plane of order q: existence is guaranteed
if GF(q) exists
14ÁÖ
6¿ù 1ÀÏ(±Ý3)
special topic - cyclic Hadamard difference sets (part I)
6¿ù 2ÀÏ(Åä) º¸°: ¿ÀÀü10½Ã - 1½Ã(3½Ã°£) B701
Conference on Chapter 10:
¹Ú»ç°úÁ¤À» Á¦¿ÜÇÑ ³ª¸ÓÁö ¼ö°»ýÀº ¾à 10ºÐ-15ºÐÀÇ
½Ã°£µ¿¾È
ÇÒ´çµÈ ÁÖÁ¦ÀÇ ³»¿ëÀ» Á¤¸®ÇÏ¿© ¹ßÇ¥Çϱ⠹ٶø´Ï´Ù.
¹ßÇ¥´Â 10ºÐ, ÁúÀÇÀÀ´ä 5ºÐ. Click
this -> "±¸Ã¼ÀûÀÎ ³»¿ë" for the details.
±ÝÀÏ ¹ßÇ¥ÀڷḦ
¹ßÇ¥½Ã°£ Áß À̾߱â ÇÑ ¸ðµç ³»¿ëÀ» ÂüÁ¶ÇÏ¿©
¼öÁ¤/º¸¿ÏÇÏ¿©
³ª¿¡°Ô ´Ù½Ã email·Î º¸³»±â ¹Ù¶ø´Ï´Ù.
6¿ù 8ÀÏ(±Ý)
¼ö¾÷½Ã°£ Àü±îÁö.
ÀÌÈÄ¿¡ ¸ðµç
ÀڷḦ ÅëÇÕÇÏ¿© ¿©±â¿¡ postingÇÒ °èȹÀÔ´Ï´Ù.
6¿ù 6ÀÏ(¼ö23)
- ÇöÃæÀÏ --- ÈÞÀÏ!
15ÁÖ
6¿ù 13ÀÏ(¼ö23) ¹Ú»ç°úÁ¤ ¹ßÇ¥ 3 (ÀºÀ¯Ã¢: Bent Function Sequences)
Á¾°ÀÏ
Class Presentation
Æò°¡Á¡¼ö: ±¸Ã¼ÀûÀÎ
³»¿ë
16ÁÖ
6¿ù 25ÀÏ(¿ù) ¿ÀÀü 10½Ã - 6¿ù 26ÀÏ(È) ¿ÀÀü 10½Ã
Take-Home
Final
--
come and visit this page for the problem sheets in 25th of June at 10
AM
--
You must submit your answer sheets in A4 size by 10 AM of 26th of June
at my office
--
No delay whatsoever will be accepted.
--
±³Àç Àüü¿¡¼(6¿ù 8ÀÏ ¼ö¾÷±îÁö).... ÁÖ·Î ¹®Á¦Ç®±â À§ÁÖÀÓ
--
HW¹®Á¦¸¦ ´Ù½Ã º¹½ÀÇÏ°í Áß°£½ÃÇè Áغñ½Ã °øºÎÇÑ ³»¿ëÀ» º¹½ÀÇÒ °Í
--
Áß°£½ÃÇè ÀÌÈÄ ¼ö¾÷½Ã°£¿¡ ´Ù·é ³»¿ë¿¡ ´ëÇؼ º¹½ÀÇÒ °Í
- Chapter 10: Linear Feedback Shift Register Sequences
- characters of finite fields
- finite projective plane
- cyclic hadamard difference sets
Final exam download
(´ä¾ÈÁö Á¦Ãâ: 6¿ù 26ÀÏ ¿ÀÀü 10:00 ±îÁö)
If you have a trouble to access the file, call me at x4861
now.
ÃÖÁ¾¼ºÀûó¸® ¿Ï·á
2001³â 6¿ù 29ÀÏ.
Go
Back Home
(GO TO 1st 2nd 3rd 4th quarter; top today bottom )