¼ö¾÷ÀÏÁö -- µðÁöÅÐ Åë½Å (3¹Ý) 2000Çг⵵
2Çбâ, Àü±âÀü°ø
¿©·¯ºÐÀÌ ÀÌ ÆäÀÌÁö¸¦ Àд ³¯Â¥¸¦
±âÁØÀ¸·Î ÇÏ¿©
ÀÌÀüÀÇ ±â·ÏÀº ÀÌ¹Ì ¼ö¾÷½Ã°£¿¡
´Ù·ç¾ú´ø ³»¿ëÀ» °£Ã߸° °ÍÀÌ°í ÀÌÈÄÀÇ ±â·ÏÀº ´ë·«ÀûÀÎ °èȹÀÔ´Ï´Ù.
ÀÚÁÖ µé·¯¼ ¿¹½À/º¹½À¿¡ µµ¿òÀÌ
µÇ±â¸¦ ¹Ù¶ó¸ç, ¿½ÉÈ÷ °øºÎÇϱ⠹ٶø´Ï´Ù.
´ã´ç±³¼ö: ¼ÛÈ«¿±
FIRST QUARTER
(GO
TO 1st
2nd 3rd 4th quarter; top today bottom )
9¿ù 2ÀÏ(±Ý78)
°³°.
- ¼ö¾÷ °èȹ¼
¹èÆ÷
- Chapter 1 °ÀÇÀÚ·á
ohpÀÚ·á º¹»ç½Ç¿¡ - 30 pages
- ±³Àç¼Ò°³, class
rule ¼³¸í
- Ãâ¼®ºÎÈ®ÀÎ
- µðÁöÅÐ Åë½Å
¸ðµ© ºí·Ïµµ(±×¸² 1) ¼³¸í
- random variables¿¡
´ëÇÑ °£´ÜÇÑ quiz
9¿ù 6ÀÏ(¼ö8)
- Chapter 1 °ÀdzëÆ®
+ ³í¹® 2Æí º¹»ç½Ç¿¡ - 20 pages
- °øÁö»çÇ× remind,
ƯÈ÷, »çÁø º¸³¾ °Í
- source coding,
channel codingÀÇ °³³ä.
9¿ù 6ÀÏ(¼ö10)
¿¬½À½Ã°£
- quiz
solution posting, covers sections 1.6-1.7
9¿ù 8ÀÏ(±Ý78)
- digital modemÀÇ
°³³ä
- chapter 1 ¸¶¹«¸®
- signals and systems
- energy
signal/power signal
- energy
spectral density/power spectral density
- random
variables/random processes
- Signals and
Systems º¹½ÀÇÒ °Í ´çºÎ
- Random Variables
and Random Processes º¹½ÀÇÒ °Í ´çºÎ (¿¬ÈޱⰣÁß)
9¿ù 13ÀÏ(¼ö8)
Ãß¼®¿¬ÈޱⰣ
9¿ù 15ÀÏ(±Ý78)
- Sections 2.1
- 2.7 : Formatting
- textual
data, analog signal
- sampling
theorem, S/N of quantizer
- Sec. 2.8 Baseband
Transmission
- PCM coding,
Analysis and Synthesis coding
- NRZ, RZ,
Phase coding, Multilevel binary
- dc component,
self-clocking, error-detection, bandwidth compression, etc
- HW#1:
Chapter 2 Exercise Problems #2-#10, ¸¶°¨: ´ÙÀ½ ÁÖ ¼ö¿äÀÏ 8±³½Ã ¼ö¾÷½Ã°£
½ÃÀ۽ñîÁö
- °ÀdzëÆ® sections
2.1-2.8 º¹»ç½Ç¿¡.
9¿ù 20ÀÏ(¼ö8)
- Section 2.9
- Basics of Signal
space
- Basic block
diagram of transmitter/channel/receiver
- receiver=demodulator+detector
9¿ù 20ÀÏ(¼ö10,11)
º¸°
- Section 2.9
continued
- ONE BIG EXAMPLE
of binary antipodal signaling
- transmit
waveforms :1-dimensional
- channel
model: simple additive, AWGN
- demodulation
is to extract a number(test statistic)
- detection
is to make a decision based only on the test statistic
- MAP decision
- ML decision
- decision
region
- BER calculation
- Q-function
- HW#2:
Chapter 2 Exercise Problems #13-#22, ¸¶°¨: ´ÙÀ½ ÁÖ ±Ý¿äÀÏ
7±³½Ã ½ÃÀ۽ñîÁö
- HW#1 copyÇÑ
»ç¶÷Àº ´Ù½Ã Ç®¾î¼ Á¦ÃâÇϽÿÀ. (½º½º·Î)
9¿ù 22ÀÏ(±Ý78)
¿¬½À½Ã°£
- Sections
2.9.2-2.9.4
- HW#1
Áú¹®¹Þ±â
9¿ù 27ÀÏ(¼ö8)
- Section 2.9
Áö³½Ã°£ ³»¿ë º¹½À
- remainings
of Section 2.9
- theorem
of irrelevance
- ÀϹÝÀûÀÎ
1-dim binary signaling systemÀÇ detector ±¸Á¶ ¹× BER
- Unipolar
signaling°ú Bipolar signalingÀÇ ºñ±³
- Section 2.10
- 2-level
VS 8-level PCMÀÇ ºñ±³
- Æò±Õ ºñÆ®¿¡³ÊÁö,
Æò±Õ ÆÞ½º¿¡³ÊÁö, data rate, bandwidth ÀÇ ºñ±³
9¿ù 27ÀÏ(¼ö10)
¿¬½À½Ã°£
- Sections
2.11-2.12
- °ÀdzëÆ®
(Sections 2.9 - 2.11) º¹»ç½Ç¿¡
9¿ù 29ÀÏ(±Ý78)
- ¿¬°íÀü ÈÞ°
-- ¿½ÉÈ÷ ÀÀ¿øÇϼ¼¿ä. (Àá½Ç¿¡¼ Ãâ¼®À» ºÎ¸¦±î....)
- HW#2 ¸¶°¨À»
ÇÏ·ç ¾Õ´ç±é´Ï´Ù. ¸¶°¨Àº 9¿ù 28ÀÏ(¸ñ) 5½Ã±îÁö. B613È£ Á¶±³¿¡°Ô.
SECOND QUARTER (GO TO 1st 2nd 3rd 4th quarter; top today bottom )
10¿ù 4ÀÏ(¼ö8)
Chapter 3
- Sections 3.1-3.2
- Two primary
causes for signal distortion (1) filtering effects (2) noise
- Concept of
signal space (revisited)
- Vector space,
norm, distance, inner product
- Why we use
signal space ?
- Complexity
of signal representation reduces dramatically while preserving properties
of signals
- Essential
contribution of noise to the operation of receiver can be identified
- Gram-Schimidt
Orthogonalization Procedure : self-exercise
10¿ù
4ÀÏ(¼ö10,11) QUIZ#1 -- Chapters 1 and 2
10¿ù 6ÀÏ(±Ý78)
- definition
of correlation matrix of a signal set
- classification:
orthogonal, antipodal, bi-orthogonal, simplex signals
- general problem
of signal design: find M signals in N dimensional space such that the maximum
(or, average) correlation is minimized
- HW#3
Signal Design and Constellation Problems: Due 10¿ù8ÀÏ(¼ö) ¼ö¾÷½Ã°£.
- introduction
to bandpass modulation
- amplitude,
phase, frequency
- coherent
vs noncoherent demodulation
- PSK, FSK,
ASK, APK, etc
10¿ù 11ÀÏ(¼ö8)
10¿ù 13ÀÏ(±Ý78)
- Decision Region
and Correlation Receiver
10¿ù 18ÀÏ(¼ö8)
- Coherent
Detection of Binary Signals in AWGN (Chapter 3, part 2)
- 0. Model
- 1. Assumptions
- 2. Signal
space representation
- 3. At the
receiver
- 4. Statistics
of n
- 5. Statistics
of r
- 6. ML decision
is Minimum distance decision
- 7. Optimum
receiver
- 8. Further
simplification
- HW#4
Joint Gaussian random variables and transformations: Due 11¿ù 1ÀÏ
(¼ö) ¼ö¾÷½Ã°£
10¿ù 20ÀÏ(±Ý78)
- 8. Still further
simplification
- 9. Performance
- 10. Various
signals for (coherent) binary systems: BPSK, BFSK
- HW#4: 3,4,5,6¹ø
¹®Ç׿¡¼ sigma_z = sigma_y = sigma·Î ÇÒ°Í.
- º¸Ãæ¼³¸í
- difference
between MF and Correlator implementations
- difference
between correlating with signals and correlating with basis functions
- difference
between ML decision and MAP decision
- meaning
of simplex signals
- difference
between the number of coordinates and the dimension
10¿ù
25ÀÏ(¼ö10,11) QUIZ#2 -- Chapter 3 ÀÇ ÀϺκР+ ¼ö¾÷³»¿ë + HW
3 &4
THIRD QUARTER (GO TO 1st 2nd 3rd 4th quarter; top today bottom )
11¿ù 1ÀÏ(¼ö8)
- 2Â÷½ÃÇè
¹®Á¦Ç®ÀÌ - ´ä¾ÈÁöÈ®ÀÎ
- N-variate joint
Gaussian random variables
11¿ù 1ÀÏ(¼ö10,11)
º¸°
- Non-coherent Detection of Binary Signals in AWGN
- model
- Generalized
ML decision
- Optimum
non-coherent receiver structure
- Performance
Analysis
- HW#5
- Performance analysis of Non-coherent Binary Detection over AWGN: due 11¿ù
15ÀÏ (¼ö)
11¿ù 3ÀÏ(±Ý78)
- DPSK encoding
and decoding
- coherent
receiver: roughly twice the BER of coherent BPSK signaling
- noncoherent
optimum receiver: same as optimum noncoherent reception of orthogonal
signals with energy 2E
- suboptimum
noncoherent receiver ( = differentially coherent detection of DPSK):
almost the same as coherent reception of orthogonal signals.
- Summary
: Binary, perfect timing (and phase for coherent reception), equal energy,
equally-likely a priori, AWGN with 2-sided PSD=N0/2
- Coherent
opt. reception of BPSK: BER = Q(sqrt{2E/N0})
- Coherent
opt. reception of optimum BFSK: BER = Q(sqrt{(E(1+2/3pi)/N0)})
- Coherent
opt. reception of orthogonal BFSK: BER = Q(sqrt{E/N0})
- Noncoherent
opt. reception of orthogonal BFSK: BER = (1/2) exp ( -E/2N0)
- Coherent
opt. reception of DPSK: BER = 2Q(sqrt{2E/N0})
- Noncoherent
opt. reception of DPSK: BER = (1/2) exp ( -E/N0)
- Differentially
coherent reception of DPSK (= suboptimum noncoherent reception of DPSK):
BER = Q(sqrt{ (E/N0) / [1+ (1/(4E/N0)) ] })
- Self-exercise:
Plot BER curves vs E/N0 using the table of Q-function or some computer program
- Professor's
suggestion: Completely understand
- various
binary waveforms,
- optimum
receiver's block diagram,
- how
to derive BER performance and required assumptions,
- various
BER relation between different methods, and
- memorize
Fig 3.22 of the text !!
- relation
of simplex signals with orthogonal signals
- decoding
with non-white noise
- whitening
filter followed by MF matched to whitened signal
- BER does
depend on the actual waveshape of binary signals. (previously, it depends
only on its energy and corr coeff.)
- how to
choose optimum waveforms ?
11¿ù 15ÀÏ(¼ö8)
- Review
Summary : Binary, perfect timing (and phase for coherent reception), equal
energy, equally-likely a priori, AWGN with 2-sided PSD=N0/2
- Coherent
opt. reception of BPSK: BER = Q(sqrt{2E/N0})
- Coherent
opt. reception of optimum BFSK: BER = Q(sqrt{(E(1+2/3pi)/N0)})
- Coherent
opt. reception of orthogonal BFSK: BER = Q(sqrt{E/N0})
- Noncoherent
opt. reception of orthogonal BFSK: BER = (1/2) exp ( -E/2N0)
- Coherent
opt. reception of DPSK: BER = 2Q(sqrt{2E/N0})
- Noncoherent
opt. reception of DPSK: BER = (1/2) exp ( -E/N0)
- Differentially
coherent reception of DPSK (= suboptimum noncoherent reception of DPSK):
BER = Q(sqrt{ (E/N0) / [1+ (1/(4E/N0)) ] })
- HW#6 part
1
- For the
7 types of binary signaling above,
- Specify
the signal set (waveform)
- describe
the receiver block diagram
- write
a program to calculate BER given above and plot 7 curves corresponding
to each scheme.
- The curves
must show the relation between BER and Eb/No for approximately BER=10E-7
or Eb/No upto 12 dB.
- What
you must hand in by 29th of Nov:
- Description of each scheme (1 and 2 above)
- Program code printout, and BER calculation results
in table, and graph containing 7 curves.
- decoding
with non-white noise
- KL-expansion
of random processes
- A random
process has KL expansion if its correlation function satisfies certain
integral equation.
- KL expansion
is an orthonormal basis expansion of a random process in which
- (1) coefficients
are uncorrelated random variables and
- (2) orthonormal
basis functions are in fact eigen functions of correlation function
of the random process, and
- (3) average
energy is the sum of the eigenvalues.
11¿ù 15ÀÏ(¼ö)
¿¬½À½Ã°£ ¾øÀ½ - Áöµµ±³¼ö °£´ãȸ Âü¼®¿ä¸Á
11¿ù 17ÀÏ(±Ý78)
- optimum pair
of antipodal signals for non-white noise
- Coherent MPSK
- orthogonal
MFSK
- HW#6
part 2 --Chapter 3 ¿¬½À¹®Á¦ Áß¿¡¼---
4,5,6,7,11,12,13,14,15,16 (17,18,19´Â Á¦¿Ü)
- HW#6
Due date = 11¿ù 29ÀÏ(¼ö) ¼ö¾÷½Ã°£½ÃÀÛ½Ã.
FOURTH QUARTER (GO
TO 1st 2nd 3rd 4th quarter; top today bottom )
11¿ù 22ÀÏ(¼ö8)
Chapter 4: Communication Link Analysis
- range equation
- thermal noise
and noise power spectral density
- req(Eb/No)
vs rec(Eb/No) and link margin
- noise figure
and effective temperature
- link analysis
- HW#7 --Chapter
4 ¿¬½À¹®Á¦ Áß¿¡¼--- 1,2,6,8,9,14,17,18,19,20
- HW#7
Due date = 12¿ù 6ÀÏ(¼ö) ¼ö¾÷½Ã°£½ÃÀÛ½Ã.
- Çб⸻±îÁöÀÇ
°ÀdzëÆ®¸¦ º¹»ç½Ç¿¡.
- error
correcting block codes
- convolution
codes
- spread
spectrum communications
- pseudonoise
sequences
- introduction
to IS95 air-interface
11¿ù 24ÀÏ(±Ý78)
Error Correction Codes - block codes
- source coding,
channel coding, and secrecy coding
- concept of
ECC
- example: BSC
with repetition code and Message Error Probability
- Shannon's Noisy
Coding Theorem
- random error
and burst error
- FEC, ARQ, Error
Concealment
- complete/incomplete
decoding
- linear/nonlinear,
block/tree, binary/nonbinary
- Hamming codes,
BCH codes, RS codes, NR codes, etc
11¿ù 29ÀÏ(¼ö8)
Error Correction Codes
- error-correction
capability
- minimum distance,
minimum weight
- [3,1,3] hamming
code = 3-time-repetition code
- HW#8
part 1 --Chapter 5 ¿¬½À¹®Á¦ Áß¿¡¼ - 2,3,4,5,8,11,16,25,26,27
- HW#8
part 2 --Chapter 6 ¿¬½À¹®Á¦ Áß¿¡¼ - 1,5,6,8,9,10,11,15,17,18
-- ÀÌ ºÎºÐÀº °ÀdzëÆ®ÀÇ ¿¬½À¹®Á¦ I, II, IIIÀ¸·Î ´ëÄ¡ÇÕ´Ï´Ù.
- HW#8
Due date = 12¿ù 13ÀÏ(¼ö) ¼ö¾÷½Ã°£½ÃÀÛ½Ã. (no more HW. this is final)
12¿ù 1ÀÏ(±Ý78)
Error Correction Codes
- complete decoding
vs incomplete decoding
- fundamental
problem of (linear) coding theory
- relation with
n, k, and d
12¿ù
2ÀÏ(Åä: 2½Ã-5½Ã, º¸°)
- binary
hamming codes
- generator
matrix, parity check matrix
- cyclic
code
- systematic
encoding
- shortening
- extended
hamming codes
- standard
array decoding
- hard/soft
decision decoding
- uncoded
MPSK vs coded MPSK systems
- coding
gain
12¿ù 6ÀÏ(¼ö8)
convolution codes
- °ÁÂÆò°¡¼³¹®,
¿Â¶óÀΠȨÆäÀÌÁö Æò°¡¼³¹®
- convolution
code °³¿ä
- encoder block
diagram (example) and parameters
- code rate,
constraint length, minimum free distance
- state diagram
- distance structure
- viterbi decoding
algorithm is ML decoding
- LONG EXAMPLE
of viterbi decoding
12¿ù 8ÀÏ(±Ý78)
Spread Spectrum Communications
- Historical
Background
- concept of
Processing Gain
- DS vs FH
- Broadband Noise
Jamming vs partialband Jamming
- PN sequence(code)
acquisition and tracking is important
- Application
to CDMA Cellular Communication
12¿ù 13ÀÏ(¼ö8)
- Á¾° - PN sequences
- m-sequence
- autocorrelation
property
- balance
property
- span-n property
- etc
12¿ù
15ÀÏ(±Ý) ±â¸»½ÃÇè (Quiz #3 and Quiz #4) ¿ÀÈÄ 8½Ã-10½Ã B004
12¿ù 22ÀÏ(±Ý)
¼ºÀûó¸®Àü °ø°í
Go Back Home
(GO TO 1st 2nd 3rd 4th quarter; top today bottom )